Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cell Dev Biol ; 9: 784999, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34926464

RESUMEN

Broccoli-derived isothiocyanate sulforaphane inhibits inflammation and cancer. Sulforaphane may support healthy aging, but the underlying detailed mechanisms are unclear. We used the C. elegans nematode model to address this question. Wild-type and 4 mutant C. elegans worm strains were fed in the presence or absence of sulforaphane and E. coli food bacteria transfected with RNA interference gene constructs. Kaplan-Meier survival analysis, live imaging of mobility and pharyngeal pumping, fluorescence microscopy, RT-qPCR, and Western blotting were performed. In the wild type, sulforaphane prolonged lifespan and increased mobility and food intake because of sulforaphane-induced upregulation of the sex-determination transcription factor TRA-1, which is the ortholog of the human GLI mediator of sonic hedgehog signaling. In turn, the tra-1 target gene daf-16, which is the ortholog of human FOXO and the major mediator of insulin/IGF-1 and aging signaling, was induced. By contrast, sulforaphane did not prolong lifespan and healthspan when tra-1 or daf-16 was inhibited by RNA interference or when worms with a loss-of-function mutation of the tra-1 or daf-16 genes were used. Conversely, the average lifespan of C. elegans with hyperactive TRA-1 increased by 8.9%, but this longer survival was abolished by RNAi-mediated inhibition of daf-16. Our data suggest the involvement of sulforaphane in regulating healthy aging and prolonging lifespan by inducing the expression and nuclear translocation of TRA-1/GLI and its downstream target DAF-16/FOXO.

2.
Aging (Albany NY) ; 13(2): 1649-1670, 2021 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-33471780

RESUMEN

The broccoli-derived isothiocyanate sulforaphane inhibits inflammation, oxidative stress and cancer, but its effect on healthspan and longevity are unclear. We used the C. elegans nematode model and fed the wildtype and 9 mutant strains ±sulforaphane. The lifespan, phenotype, pharyngeal pumping, mobility, lipofuscin accumulation, and RNA and protein expression of the nematodes were assessed by using Kaplan-Meier survival analysis, in vivo live imaging, fluorescence microscopy, and qRT-PCR. Sulforaphane increased the lifespan and promoted a health-related phenotype by increasing mobility, appetite and food intake and reducing lipofuscin accumulation. Mechanistically, sulforaphane inhibited DAF-2-mediated insulin/insulin-like growth factor signaling and its downstream targets AGE-1, AKT-1/AKT-2. This was associated with increased nuclear translocation of the FOXO transcription factor homolog DAF-16. In turn, the target genes sod-3, mtl-1 and gst-4, known to enhance stress resistance and lifespan, were upregulated. These results indicate that sulforaphane prolongs the lifespan and healthspan of C. elegans through insulin/IGF-1 signaling. Our results provide the basis for a nutritional sulforaphane-enriched strategy for the promotion of healthy aging and disease prevention.


Asunto(s)
Anticarcinógenos/farmacología , Caenorhabditis elegans/efectos de los fármacos , Isotiocianatos/farmacología , Longevidad/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sulfóxidos/farmacología , Animales , Apetito/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Factores de Transcripción Forkhead/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Receptor de Insulina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA