Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochimie ; 88(11): 1583-90, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16987577

RESUMEN

Cesium as an alkali element exhibits a chemical reactivity similar to that of potassium, an essential element for plants. It has been suggested that Cs phytotoxicity might be due either to its competition with potassium to enter the plant, resulting in K starvation, or to its intracellular competition with K binding sites in cells. Such elemental interactions can be evidenced by chemical imaging, which determines the elemental distributions. In this study, the model plant Arabidopsis thaliana was exposed to 1 mM cesium in the presence (20 mM) or not of potassium. The quantitative imaging of Cs and endogenous elements (P, S, Cl, K, Ca, Mn, Fe, and Zn) was carried out using ion beam micro-chemical imaging with 5 microm spatial resolution. Chemical imaging was also evidenced by microfocused synchrotron-based X-ray fluorescence (microXRF) which presents a better lateral resolution (<1 microm) but is not quantitative. Cesium distribution was similar to potassium which suggests that Cs can compete with K binding sites in cells. Cesium and potassium were mainly concentrated in the vascular system of stems and leaves. Cs was also found in lower concentration in leaves mesophyll/epidermis. This late representing the larger proportion in mass, mesophyll/epidermis can be considered as the major storage site for cesium in A. thaliana. Trichomes were not found to accumulate cesium. Interestingly, increased Mn, Fe, and Zn concentrations were observed in leaves at high chlorosis. Mn and Fe increased more in the mesophyll than in veins, whereas zinc increased more in veins than in the mesophyll suggesting a tissue specific interaction of Cs with these trace elements homeostasis. This study illustrates the sensitivity of ion beam microprobe and microfocused synchrotron-based X-ray fluorescence to investigate concentrations and distributions of major and trace elements in plants. It also shows the suitability of these analytical imaging techniques to complement biochemical investigations of metallic stress in plants.


Asunto(s)
Arabidopsis/metabolismo , Cesio/metabolismo , Potasio/metabolismo , Oligoelementos/metabolismo , Arabidopsis/crecimiento & desarrollo , Cesio/farmacología , Germinación , Microscopía Fluorescente
2.
Biochimie ; 88(11): 1533-47, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16716483

RESUMEN

The incorporation and localisation of 133Cs in a plant cellular model and the metabolic response induced were analysed as a function of external K concentration using a multidisciplinary approach. Sucrose-fed photosynthetic Arabidopsis thaliana suspension cells, grown in a K-containing or K-depleted medium, were submitted to a 1 mM Cs stress. Cell growth, strongly diminished in absence of K, was not influenced by Cs. In contrast, the chlorophyll content, affected by a Cs stress superposed to K depletion, did not vary under the sole K depletion. The uptake of Cs was monitored in vivo using 133Cs NMR spectroscopy while the final K and Cs concentrations were determined using atomic absorption spectrometry. Cs absorption rate and final concentration increased in a K-depleted external medium; in vivo NMR revealed that intracellular Cs was distributed in two kinds of compartment. Synchrotron X-ray fluorescence microscopy indicated that one could be the chloroplasts. In parallel, the cellular response to the Cs stress was analysed using proteomic and metabolic profiling. Proteins up- and down-regulated in response to Cs, in presence of K+ or not, were analysed by 2D gel electrophoresis and identified by mass spectrometry. No salient feature was detected excepting the overexpression of antioxidant enzymes, a common response of Arabidopsis cells stressed whether by Cs or by K-depletion. 13C and 31P NMR analysis of acid extracts showed that the metabolome impact of the Cs stress was also a function of the K nutrition. These analyses suggested that sugar metabolism and glycolytic fluxes were affected in a way depending upon the medium content in K+. Metabolic flux measurements using 13C labelling would be an elegant way to pursue on this line. Using our experimental system, a progressively stronger Cs stress might point out other specific responses elicited by Cs.


Asunto(s)
Arabidopsis/metabolismo , Radioisótopos de Cesio/toxicidad , Cesio/toxicidad , Potasio/farmacología , Proteoma , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , División Celular/efectos de los fármacos , Cesio/farmacocinética , Radioisótopos de Cesio/farmacocinética , Clorofila/metabolismo , Cinética , Espectroscopía de Resonancia Magnética
3.
Plant Physiol ; 127(1): 202-11, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11553748

RESUMEN

Effects of water deficit on the chlorophyllide (Chlide) transformation pathway were studied in etiolated barley (Hordeum vulgare) leaves by analyzing absorption spectra and 77-K fluorescence spectra deconvoluted in components. Chlide transformations were examined in dehydrated leaves exposed to a 35-ms saturating flash triggering protochlorophyllide (Pchlide) and Chlide transformation processes. During the 90 min following the flash, we found that dehydration induced modifications of Chlide transformations, but no effect on Pchlide phototransformation into Chlide was observed. During this time, content of NADPH-Pchlide oxydoreductase in leaves did not change. Chlide transformation process in dehydrated leaves was characterized by the alteration of the Shibata shift process, by the appearance of a new Chlide species emitting at 692 nm, and by the favored formation of Chl(ide) A(668)F(676). The formation of Chl(ide) A(668)F(676), so-called "free Chlide," was probably induced by disaggregation of highly aggregated Chlide complexes. Here, we offer evidence for the alteration of photoactive Pchlide regeneration process, which may be caused by the desiccation-induced inhibition of Pchlide synthesis.


Asunto(s)
Clorofilidas/metabolismo , Hordeum/metabolismo , Adaptación Fisiológica , Western Blotting , Clorofilidas/química , Desecación , Hordeum/química , Cetona Oxidorreductasas/metabolismo , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Proteínas de Plantas/análisis , Piruvato-Sintasa , Espectrometría de Fluorescencia , Agua/metabolismo
4.
Plant Cell Physiol ; 41(5): 565-70, 2000 May.
Artículo en Inglés | MEDLINE | ID: mdl-10929939

RESUMEN

In etiolated leaves, saturating flash of 200 ms induces phototransformation of protochlorophyllide (Pchlide) F655 into chlorophyllide (Chlide), then into Chl through reactions which do not need light sensibilisation. The synthesis of Chl is known to be slowed down in etiolated leaves exposed to desiccation stress. In order to analyse the intensity and time-course of Chlide transformation into Chl, we used the fluorescence emission of etiolated leaves previously exposed to a 200 ms saturating flash. We used low-temperature fluorescence spectroscopy to reveal the inhibition site of Chl synthesis in etiolated barley leaves exposed to water stress. Shibata shift appears as the main target point of the water deficit. It was found that water deficit inhibits partially active Pchlide F655 regeneration. Also, esterification of Chlide into Chl is impaired. It appears that these inhibitory effects alter the appearance of PSII active reaction centres.


Asunto(s)
Clorofila/biosíntesis , Hordeum/metabolismo , Clorofilidas/metabolismo , Oscuridad , Desecación , Luz , Hojas de la Planta/metabolismo , Protoclorofilida/metabolismo , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...