Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Econ Entomol ; 115(4): 1294-1302, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35679166

RESUMEN

The lesser grain borer Rhyzopertha dominica is the major pest of stored paddy rice globally, including in Taiwan. It has strong phototaxis and is good at flying, suitable for developing a light-trapping method to monitor and control it. In the present study, a wavelength of light-emitting diodes (LEDs), i.e., 373 nm, was determined to be the most efficient to trap R. dominica using a dodecagon maze. Accordingly, an LED trap, named the Taiwan Agricultural Research Institute-LED (TARI-LED) trap, was invented, which comprised LEDs of two distinct wavelengths (373 and 408 nm), a wavelength switch, a suction fan, and an insect collector. The trapping efficiency was assessed in a 4-m3 laboratory arena and two paddy rice storehouses. An initial assessment was performed in the laboratory arena and showed that the TARI-LED trap with 373-nm wavelength for R. dominica rapidly increased in the first 30 min, reaching the highest trapping rate (68.5%) after 3 h. In addition, no significant difference was observed between the suction fan turned on or off. The field tests showed that the 373-nm wavelength had the highest effectiveness for trapping R. dominica in the two paddy rice storehouses, and no significant difference was observed in the number of R. dominica trapped by the 373-nm TARI-LED trap or the CDC-UV light trap. In conclusion, our TARI-LED trap 373 nm exhibited high efficiency in trapping R. dominica in paddy rice storehouses. Moreover, a suction fan-free design should benefit long-term and safe use in paddy rice storehouses trapping R. dominica.


Asunto(s)
Escarabajos , Oryza , Animales , Dominica , Taiwán
2.
J Venom Anim Toxins Incl Trop Dis ; 26: e20200056, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33281887

RESUMEN

BACKGROUND: The venom of bamboo vipers (Trimeresurus stejnegeri - TS), commonly found in Taiwan, contains deadly hemotoxins that cause severe envenomation. Equine-derived antivenom is a specific treatment against snakebites, but its production costs are high and there are some inevitable side effects. The aim of the present work is to help in the development of an affordable and more endurable therapeutic strategy for snakebites. METHODS: T. stejnegeri venom proteins were inactivated by glutaraldehyde in order to immunize hens for polyclonal immunoglobulin (IgY) antibodies production. After IgY binding assays, two antibody libraries were constructed expressing single-chain variable fragment (scFv) antibodies joined by the short or long linker for use in phage display antibody technology. Four rounds of biopanning were carried out. The selected scFv antibodies were then further tested for their binding activities and neutralization assays to TS proteins. RESULTS: Purified IgY from egg yolk showed the specific binding ability to TS proteins. The dimensions of these two libraries contain 2.4 × 107 and 6.8 × 107 antibody clones, respectively. An increase in the titers of eluted phage indicated anti-TS clones remarkably enriched after 2nd panning. The analysis based on the nucleotide sequences of selected scFv clones indicated that seven groups of short linkers and four groups of long linkers were identified. The recombinant scFvs showed significant reactivity to TS venom proteins and a cross-reaction to Trimeresurus mucrosquamatus venom proteins. In in vivo studies, the data demonstrated that anti-TS IgY provided 100% protective effects while combined scFvs augmented partial survival time of mice injected with a lethal amount of TS proteins. CONCLUSION: Chickens were excellent hosts for the production of neutralization antibodies at low cost. Phage display technology is available for generation of monoclonal antibodies against snake venom proteins. These antibodies could be applied in the development of diagnostic kits or as an alternative for snakebite envenomation treatment in the near future.

3.
J Venom Anim Toxins Incl Trop Dis ; 26: e20200043, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-32983233

RESUMEN

BACKGROUND: Trimeresurus stejnegeri stejnegeri bite induces tissue swelling, pain, thrombocytopenia, rhabdomyolysis, and acute renal failure. However, the incidence of coagulopathy, factors associated with wound necrosis, and the appropriate management of this condition have not been well characterized yet. MATERIALS: This study included patients bitten by T. s. stejnegeri that were admitted to the study hospitals from 2001 to 2016. Patient characteristics, laboratory data, and management approaches were compared in victims with and without wound necrosis. RESULTS: A total of 185 patients were evaluated: three patients (1.6%) were asymptomatic; whereas tissue swelling and pain, local ecchymosis, wound necrosis, coagulopathy, thrombocytopenia, rhabdomyolysis, and renal impairment were present in 182, 53, 13, 15, 10, 1, and 3 patients, respectively. One patient died from coagulopathy and hemorrhagic shock. Antivenom was administered to all envenomed patients at a median time of 1.8 h after the bite. The median total dose of antivenom was five vials. Chi-square analysis showed that bitten fingers, using cold packs during first aid, presence of bullae or blisters, lymphangitis or lymphadenitis, local numbness and suspected infection to be significantly associated with wound necrosis. After adjustment using a multivariate logistic regression model, only cold packs as first aid, bulla or blister formation, and wound infection remained significant. CONCLUSIONS: The main effects of T. s. stejnegeri envenomation are tissue swelling, pain, and local ecchymosis. We do not recommend the use of cold packs during first aid to reduce wound pain, as this may be a risk factor for wound necrosis. In addition, patients with bulla or blister formation should be carefully examined for subsequent wound necrosis. Antiplatelet use may worsen systemic bleeding. No severe rhabdomyolysis or renal failure was observed in this large case series, we therefore considered that they were not prominent effects of T. s. stejnegeri bite.

4.
J. Venom. Anim. Toxins incl. Trop. Dis. ; 26: e20200056, 2020. tab, graf
Artículo en Inglés | VETINDEX | ID: vti-32273

RESUMEN

The venom of bamboo vipers (Trimeresurus stejnegeri - TS), commonly found in Taiwan, contains deadly hemotoxins that cause severe envenomation. Equine-derived antivenom is a specific treatment against snakebites, but its production costs are high and there are some inevitable side effects. The aim of the present work is to help in the development of an affordable and more endurable therapeutic strategy for snakebites. Methods: T. stejnegeri venom proteins were inactivated by glutaraldehyde in order to immunize hens for polyclonal immunoglobulin (IgY) antibodies production. After IgY binding assays, two antibody libraries were constructed expressing single-chain variable fragment (scFv) antibodies joined by the short or long linker for use in phage display antibody technology. Four rounds of biopanning were carried out. The selected scFv antibodies were then further tested for their binding activities and neutralization assays to TS proteins. Results: Purified IgY from egg yolk showed the specific binding ability to TS proteins. The dimensions of these two libraries contain 2.4 × 107 and 6.8 × 107 antibody clones, respectively. An increase in the titers of eluted phage indicated anti-TS clones remarkably enriched after 2nd panning. The analysis based on the nucleotide sequences of selected scFv clones indicated that seven groups of short linkers and four groups of long linkers were identified. The recombinant scFvs showed significant reactivity to TS venom proteins and a cross-reaction to Trimeresurus mucrosquamatus venom proteins. In in vivo studies, the data demonstrated that anti-TS IgY provided 100% protective effects while combined scFvs augmented partial survival time of mice injected with a lethal amount of TS proteins. Conclusion: Chickens were excellent hosts for the production of neutralization antibodies at low cost. Phage display technology is available for generation of monoclonal antibodies against snake venom proteins. These antibodies could be applied in the development of diagnostic kits or as an alternative for snakebite envenomation treatment in the near future.(AU)


Asunto(s)
Animales , Pollos/inmunología , Venenos de Serpiente , Trimeresurus/inmunología , Antivenenos/análisis , Antivenenos/inmunología
5.
Artículo en Inglés | VETINDEX | ID: vti-32226

RESUMEN

Trimeresurus stejnegeri stejnegeri bite induces tissue swelling, pain, thrombocytopenia, rhabdomyolysis, and acute renal failure. However, the incidence of coagulopathy, factors associated with wound necrosis, and the appropriate management of this condition have not been well characterized yet. Materials: This study included patients bitten by T. s. stejnegeri that were admitted to the study hospitals from 2001 to 2016. Patient characteristics, laboratory data, and management approaches were compared in victims with and without wound necrosis. Results: A total of 185 patients were evaluated: three patients (1.6%) were asymptomatic; whereas tissue swelling and pain, local ecchymosis, wound necrosis, coagulopathy, thrombocytopenia, rhabdomyolysis, and renal impairment were present in 182, 53, 13, 15, 10, 1, and 3 patients, respectively. One patient died from coagulopathy and hemorrhagic shock. Antivenom was administered to all envenomed patients at a median time of 1.8 h after the bite. The median total dose of antivenom was five vials. Chi-square analysis showed that bitten fingers, using cold packs during first aid, presence of bullae or blisters, lymphangitis or lymphadenitis, local numbness and suspected infection to be significantly associated with wound necrosis. After adjustment using a multivariate logistic regression model, only cold packs as first aid, bulla or blister formation, and wound infection remained significant. Conclusions: The main effects of T. s. stejnegeri envenomation are tissue swelling, pain, and local ecchymosis. We do not recommend the use of cold packs during first aid to reduce wound pain, as this may be a risk factor for wound necrosis. In addition, patients with bulla or blister formation should be carefully examined for subsequent wound necrosis. Antiplatelet use may worsen systemic bleeding. No severe rhabdomyolysis or renal failure was observed in this large case series, we therefore considered that they were not prominent effects of T. s. stejnegeri bite.(AU)


Asunto(s)
Animales , Trimeresurus , Venenos de Crotálidos/análisis , Necrosis
6.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;26: e20200043, 2020. tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1135129

RESUMEN

Trimeresurus stejnegeri stejnegeri bite induces tissue swelling, pain, thrombocytopenia, rhabdomyolysis, and acute renal failure. However, the incidence of coagulopathy, factors associated with wound necrosis, and the appropriate management of this condition have not been well characterized yet. Materials: This study included patients bitten by T. s. stejnegeri that were admitted to the study hospitals from 2001 to 2016. Patient characteristics, laboratory data, and management approaches were compared in victims with and without wound necrosis. Results: A total of 185 patients were evaluated: three patients (1.6%) were asymptomatic; whereas tissue swelling and pain, local ecchymosis, wound necrosis, coagulopathy, thrombocytopenia, rhabdomyolysis, and renal impairment were present in 182, 53, 13, 15, 10, 1, and 3 patients, respectively. One patient died from coagulopathy and hemorrhagic shock. Antivenom was administered to all envenomed patients at a median time of 1.8 h after the bite. The median total dose of antivenom was five vials. Chi-square analysis showed that bitten fingers, using cold packs during first aid, presence of bullae or blisters, lymphangitis or lymphadenitis, local numbness and suspected infection to be significantly associated with wound necrosis. After adjustment using a multivariate logistic regression model, only cold packs as first aid, bulla or blister formation, and wound infection remained significant. Conclusions: The main effects of T. s. stejnegeri envenomation are tissue swelling, pain, and local ecchymosis. We do not recommend the use of cold packs during first aid to reduce wound pain, as this may be a risk factor for wound necrosis. In addition, patients with bulla or blister formation should be carefully examined for subsequent wound necrosis. Antiplatelet use may worsen systemic bleeding. No severe rhabdomyolysis or renal failure was observed in this large case series, we therefore considered that they were not prominent effects of T. s. stejnegeri bite.(AU)


Asunto(s)
Animales , Trombocitopenia , Mordeduras y Picaduras , Antivenenos , Factores de Riesgo , Trimeresurus , Venenos de Crotálidos , Necrosis , Heridas y Lesiones
7.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;26: e20200056, 2020. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1135145

RESUMEN

The venom of bamboo vipers (Trimeresurus stejnegeri - TS), commonly found in Taiwan, contains deadly hemotoxins that cause severe envenomation. Equine-derived antivenom is a specific treatment against snakebites, but its production costs are high and there are some inevitable side effects. The aim of the present work is to help in the development of an affordable and more endurable therapeutic strategy for snakebites. Methods: T. stejnegeri venom proteins were inactivated by glutaraldehyde in order to immunize hens for polyclonal immunoglobulin (IgY) antibodies production. After IgY binding assays, two antibody libraries were constructed expressing single-chain variable fragment (scFv) antibodies joined by the short or long linker for use in phage display antibody technology. Four rounds of biopanning were carried out. The selected scFv antibodies were then further tested for their binding activities and neutralization assays to TS proteins. Results: Purified IgY from egg yolk showed the specific binding ability to TS proteins. The dimensions of these two libraries contain 2.4 × 107 and 6.8 × 107 antibody clones, respectively. An increase in the titers of eluted phage indicated anti-TS clones remarkably enriched after 2nd panning. The analysis based on the nucleotide sequences of selected scFv clones indicated that seven groups of short linkers and four groups of long linkers were identified. The recombinant scFvs showed significant reactivity to TS venom proteins and a cross-reaction to Trimeresurus mucrosquamatus venom proteins. In in vivo studies, the data demonstrated that anti-TS IgY provided 100% protective effects while combined scFvs augmented partial survival time of mice injected with a lethal amount of TS proteins. Conclusion: Chickens were excellent hosts for the production of neutralization antibodies at low cost. Phage display technology is available for generation of monoclonal antibodies against snake venom proteins. These antibodies could be applied in the development of diagnostic kits or as an alternative for snakebite envenomation treatment in the near future.(AU)


Asunto(s)
Animales , Venenos de Serpiente , Antivenenos , Pollos , Trimeresurus , Anticuerpos , Bacteriófagos
8.
J Venom Anim Toxins Incl Trop Dis ; 19(1): 22, 2013 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-24063308

RESUMEN

BACKGROUND: The crown-of-thorns starfish Acanthaster planci is a venomous species from Taiwan whose venom provokes strong hemolytic activity. To understand the hemolytic properties of A. planci venom, samples were collected from A. planci spines in the Penghu Islands, dialyzed with distilled water, and lyophilized into A. planci spine venom (ASV) powder. RESULTS: Both crude venom and ASV cause 50% hemolysis at a concentration of 20 µg/mL. The highest hemolytic activity of ASV was measured at pH 7.0-7.4; ASV-dependent hemolysis was sharply reduced when the pH was lower than 3 or greater than 8. There was almost no hemolytic activity when the Cu2+ concentration was increased to 10 mM. Furthermore, incubation at 100°C for 30 to 60 minutes sharply decreased the hemolytic activity of ASV. After treatment with the protease α-chymotrypsin, the glycoside hydrolase cellulase, and the membrane component cholesterin, the hemolytic activity of ASV was significantly inhibited. CONCLUSIONS: The results of this study provide fundamental information about A. planci spine venom. The hemolytic activity was affected by pH, temperature, metal ions, EDTA, cholesterin, proteases, and glycoside hydrolases. ASV hemolysis was inhibited by Cu2+, cholesterin, α-chymotrypsin, and cellulose, factors that might prevent the hemolytic activity of venom and provide the medical treatment for sting.

9.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;19: 22, maio 2013. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-954707

RESUMEN

Background : The crown-of-thorns starfish Acanthaster planci is a venomous species from Taiwan whose venom provokes strong hemolytic activity. To understand the hemolytic properties of A. planci venom, samples were collected from A. planci spines in the Penghu Islands, dialyzed with distilled water, and lyophilized into A. planci spine venom (ASV) powder. Results : Both crude venom and ASV cause 50% hemolysis at a concentration of 20 μg/mL. The highest hemolytic activity of ASV was measured at pH 7.0-7.4; ASV-dependent hemolysis was sharply reduced when the pH was lower than 3 or greater than 8. There was almost no hemolytic activity when the Cu2+ concentration was increased to 10 mM. Furthermore, incubation at 100°C for 30 to 60 minutes sharply decreased the hemolytic activity of ASV. After treatment with the protease α-chymotrypsin, the glycoside hydrolase cellulase, and the membrane component cholesterin, the hemolytic activity of ASV was significantly inhibited. Conclusions : The results of this study provide fundamental information about A. planci spine venom. The hemolytic activity was affected by pH, temperature, metal ions, EDTA, cholesterin, proteases, and glycoside hydrolases. ASV hemolysis was inhibited by Cu2+, cholesterin, α-chymotrypsin, and cellulose, factors that might prevent the hemolytic activity of venom and provide the medical treatment for sting.(AU)


Asunto(s)
Animales , Péptido Hidrolasas , Columna Vertebral , Estrellas de Mar , Hemólisis
10.
J. venom. anim. toxins incl. trop. dis ; J. venom. anim. toxins incl. trop. dis;19maio 2013.
Artículo en Inglés | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484544

RESUMEN

Background : The crown-of-thorns starfish Acanthaster planci is a venomous species from Taiwan whose venom provokes strong hemolytic activity. To understand the hemolytic properties of A. planci venom, samples were collected from A. planci spines in the Penghu Islands, dialyzed with distilled water, and lyophilized into A. planci spine venom (ASV) powder. Results : Both crude venom and ASV cause 50% hemolysis at a concentration of 20 g/mL. The highest hemolytic activity of ASV was measured at pH 7.0-7.4; ASV-dependent hemolysis was sharply reduced when the pH was lower than 3 or greater than 8. There was almost no hemolytic activity when the Cu2+ concentration was increased to 10 mM. Furthermore, incubation at 100°C for 30 to 60 minutes sharply decreased the hemolytic activity of ASV. After treatment with the protease -chymotrypsin, the glycoside hydrolase cellulase, and the membrane component cholesterin, the hemolytic activity of ASV was significantly inhibited. Conclusions : The results of this study provide fundamental information about A. planci spine venom. The hemolytic activity was affected by pH, temperature, metal ions, EDTA, cholesterin, proteases, and glycoside hydrolases. ASV hemolysis was inhibited by Cu2+, cholesterin, -chymotrypsin, and cellulose, factors that might prevent the hemolytic activity of venom and provide the medical treatment for sting.

11.
Artículo en Inglés | VETINDEX | ID: vti-443360

RESUMEN

Background : The crown-of-thorns starfish Acanthaster planci is a venomous species from Taiwan whose venom provokes strong hemolytic activity. To understand the hemolytic properties of A. planci venom, samples were collected from A. planci spines in the Penghu Islands, dialyzed with distilled water, and lyophilized into A. planci spine venom (ASV) powder. Results : Both crude venom and ASV cause 50% hemolysis at a concentration of 20 g/mL. The highest hemolytic activity of ASV was measured at pH 7.0-7.4; ASV-dependent hemolysis was sharply reduced when the pH was lower than 3 or greater than 8. There was almost no hemolytic activity when the Cu2+ concentration was increased to 10 mM. Furthermore, incubation at 100°C for 30 to 60 minutes sharply decreased the hemolytic activity of ASV. After treatment with the protease -chymotrypsin, the glycoside hydrolase cellulase, and the membrane component cholesterin, the hemolytic activity of ASV was significantly inhibited. Conclusions : The results of this study provide fundamental information about A. planci spine venom. The hemolytic activity was affected by pH, temperature, metal ions, EDTA, cholesterin, proteases, and glycoside hydrolases. ASV hemolysis was inhibited by Cu2+, cholesterin, -chymotrypsin, and cellulose, factors that might prevent the hemolytic activity of venom and provide the medical treatment for sting.

12.
Eur Heart Journal ; 25(1): 32-38, 20040100. ilus
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IDPCPROD, Sec. Est. Saúde SP | ID: biblio-1062619

RESUMEN

The aim of this study is to compare the efficacy of sirolimus-eluting stents (SES) on neointimal growth and vessel remodelling for in-stent restenosis versus de novo coronary artery lesions using serial intravascular ultrasound (IVUS). METHODS AND RESULTS: The study population consisted of 86 patients with in-stent restenosis (ISR) (n=41) or de novo lesions (n=45) treated with SES and evaluated by IVUS post-procedure and at follow-up. One 18-mm SES was used for de novo lesions while 16 patients with ISR received >1SES (total stented length 17.9 mm vs 22.0 mm espectively; P=0.004). At follow-up, no differences were observed between the ISR and de novo groups with respect to changes in the mean external elastic membrane (1.7% vs 1.3%; 0.53),plaque behind the stent (1.2% vs 3.4%; P=0.49), and lumen areas (0.7% vs 1.9%; P=0.58). No positive remodelling or edge effect was observed. A gap between stents was observed in two patients with ISR, where more prominent, though non-obstructive, neointimal proliferation was noted. CONCLUSION: Sirolimus-eluting stenting is equally effective at inhibiting neointimal proliferation in de novo and ISR lesions without inducing edge restenosis or positive vascular remodelling...


Asunto(s)
Masculino , Femenino , Adulto , Persona de Mediana Edad , Humanos , Análisis Multivariante , Reestenosis Coronaria , Sirolimus , Stents
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA