Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Dent ; 141: 104834, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38217958

RESUMEN

OBJECTIVES: The aim of this study is to evaluate the accuracy of zirconia crowns fabricated using stereolithography (SLA) and digital light processing (DLP) and to compare their accuracy with those fabricated using the subtractive manufacturing (SM) method. METHODS: A typodont model with a prepared maxillary first molar was scanned, and the anatomical contour crown was designed using dental computer-aided-design (CAD) software. The designed file in standard tessellation language (STL) format was used to fabricate 10 crowns per group. The crowns were manufactured using a dental milling machine (Datron D5; MLC group), SLA (CERAMAKER 900; SLAC group), and DLP (ZIPRO; DLPC group) printers. The fabricated crowns were scanned using a dental laboratory scanner and saved in three parts: the external, intaglio, and marginal surfaces. For accuracy assessment, these parts were superimposed to the reference file. Root mean square (RMS) values were evaluated using three-dimensional analysis software (Geomagic Control X). Statistical significance was evaluated using a nonparametric Kruskal-Wallis test (α = 0.05) and a post-hoc Mann-Whitney U test with Bonferroni correction (α = 0.016). RESULTS: Trueness evaluation revealed the lowest RMS value in all areas in the MLC group, followed by that in the DLPC group. The precision evaluation revealed the lowest RMS value in all areas in the MLC group. Statistically significant differences were observed among the groups in the external, intaglio, and marginal surface (P < 0.05). CONCLUSIONS: Although the restorations fabricated using SM revealed higher accuracy, the crowns manufactured using SLA and DLP methods were considered clinically acceptable. CLINICAL SIGNIFICANCE: In the production of zirconia crowns, subtractive manufacturing continues to demonstrate significantly higher accuracy compared to additive manufacturing. However, crowns fabricated using the additive manufacturing method also demonstrated high accuracy.


Asunto(s)
Diseño de Prótesis Dental , Estereolitografía , Circonio , Coronas , Diseño Asistido por Computadora
2.
Dent Mater J ; 42(1): 42-48, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36288942

RESUMEN

This study aims to measure the trueness of zirconia crowns with different build directions of materials fabricated using the stereolithography (SLA) method. The anatomic contour crown of prepped maxillary right first molar was designed using CAD software to obtain the standard tessellation language (STL) file. Two different build directions were set for the crowns using Materialize Magics software. One group was built with a margin base platform, while the other group was built in the direction opposite to the occlusal surface base platform. The 20 crown-shaped parts were printed. The STL files of scanned printing zirconia crowns were superimposed each segment by the 3D analysis software. The two groups were statistically analyzed using t-tests. Significant differences were found in the marginal and internal discrepancies between the groups. The build direction had a significant influence on the accuracy of the zirconia crown. The results indicate the most effective build direction for manufacturing SLA 3D-printed crowns.


Asunto(s)
Diseño Asistido por Computadora , Estereolitografía , Diseño de Prótesis Dental/métodos , Coronas , Impresión Tridimensional , Adaptación Marginal Dental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...