Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Comp Neurol ; 530(7): 978-997, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35078267

RESUMEN

Perception is the result of interactions between the sensory periphery, thalamus, and cerebral cortex. Inputs from the retina project to the first-order dorsal lateral geniculate nucleus (dLGN), which projects to the primary visual cortex (V1). In return, the cortex innervates the thalamus. While layer 6 projections innervate all thalamic nuclei, cortical layer 5 neurons selectively project to the higher order lateral posterior nucleus (LP) and not to dLGN. It has been demonstrated that a subpopulation of layer 5 (Rbp4-Cre+) projections rewires to dLGN after monocular or binocular enucleation in young postnatal mice. However, the exact cortical regional origin of these projections was not fully determined, and it remained unclear whether these changes persisted into adulthood. In this study, we report gene expression changes observed in the dLGN after monocular enucleation at birth using microarray, qPCR at P6, and in situ hybridization at P8. We report that genes that are normally enriched in dLGN, but not LP during development are preferentially downregulated in dLGN following monocular enucleation. Comparisons with developmental gene expression patters in dLGN suggest more immature and delayed gene expression in enucleated dLGN. Combined tracing and immuno-histochemical analysis revealed that the induced layer 5 fibers that innervate enucleated dLGN originate from putative primary visual cortex and they retain increased VGluT1+ synapse formation into adulthood. Our results indicate a new form of plasticity when layer 5 driver input takes over the innervation of an originally first-order thalamic nucleus after early sensory deficit.


Asunto(s)
Cuerpos Geniculados , Corteza Visual , Animales , Cuerpos Geniculados/fisiología , Ratones , Núcleos Talámicos , Tálamo/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología
2.
EMBO J ; 37(10)2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29661885

RESUMEN

Many long non-coding RNAs (lncRNAs) are expressed during central nervous system (CNS) development, yet their in vivo roles and mechanisms of action remain poorly understood. Paupar, a CNS-expressed lncRNA, controls neuroblastoma cell growth by binding and modulating the activity of transcriptional regulatory elements in a genome-wide manner. We show here that the Paupar lncRNA directly binds KAP1, an essential epigenetic regulatory protein, and thereby regulates the expression of shared target genes important for proliferation and neuronal differentiation. Paupar promotes KAP1 chromatin occupancy and H3K9me3 deposition at a subset of distal targets, through the formation of a ribonucleoprotein complex containing Paupar, KAP1 and the PAX6 transcription factor. Paupar-KAP1 genome-wide co-occupancy reveals a fourfold enrichment of overlap between Paupar and KAP1 bound sequences, the majority of which also appear to associate with PAX6. Furthermore, both Paupar and Kap1 loss-of-function in vivo disrupt olfactory bulb neurogenesis. These observations provide important conceptual insights into the trans-acting modes of lncRNA-mediated epigenetic regulation and the mechanisms of KAP1 genomic recruitment, and identify Paupar and Kap1 as regulators of neurogenesis in vivo.


Asunto(s)
Cromatina/genética , Células-Madre Neurales/citología , Neuroblastoma/patología , Neurogénesis , Bulbo Olfatorio/citología , ARN Largo no Codificante/metabolismo , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Animales , Animales Recién Nacidos , Ciclo Celular , Proliferación Celular , Células Cultivadas , Epigénesis Genética , Genómica , Ratones , Células-Madre Neurales/metabolismo , Neuroblastoma/genética , Neuroblastoma/metabolismo , Bulbo Olfatorio/metabolismo , Factor de Transcripción PAX6/genética , Factor de Transcripción PAX6/metabolismo , ARN Largo no Codificante/genética , Elementos Reguladores de la Transcripción , Proteína 28 que Contiene Motivos Tripartito/genética
3.
Nat Commun ; 7: 13496, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27882918

RESUMEN

Insulin secretion from pancreatic ß-cells is impaired in all forms of diabetes. The resultant hyperglycaemia has deleterious effects on many tissues, including ß-cells. Here we show that chronic hyperglycaemia impairs glucose metabolism and alters expression of metabolic genes in pancreatic islets. In a mouse model of human neonatal diabetes, hyperglycaemia results in marked glycogen accumulation, and increased apoptosis in ß-cells. Sulphonylurea therapy rapidly normalizes blood glucose levels, dissipates glycogen stores, increases autophagy and restores ß-cell metabolism. Insulin therapy has the same effect but with slower kinetics. Similar changes are observed in mice expressing an activating glucokinase mutation, in in vitro models of hyperglycaemia, and in islets from type-2 diabetic patients. Altered ß-cell metabolism may underlie both the progressive impairment of insulin secretion and reduced ß-cell mass in diabetes.


Asunto(s)
Apoptosis/fisiología , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucógeno/metabolismo , Hiperglucemia/metabolismo , Enfermedades del Recién Nacido/metabolismo , Células Secretoras de Insulina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/fisiología , Glucemia/efectos de los fármacos , Línea Celular , Modelos Animales de Enfermedad , Glucoquinasa/genética , Humanos , Hipoglucemiantes/farmacología , Técnicas In Vitro , Recién Nacido , Insulina/farmacología , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Mutación , Ratas , Compuestos de Sulfonilurea/farmacología
4.
Neuropsychopharmacology ; 41(13): 3060-3069, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27388330

RESUMEN

Catechol-O-methyltransferase (COMT) modulates dopamine levels in the prefrontal cortex. The human gene contains a polymorphism (Val158Met) that alters enzyme activity and influences PFC function. It has also been linked with cognition and anxiety, but the findings are mixed. We therefore developed a novel mouse model of altered COMT activity. The human Met allele was introduced into the native mouse COMT gene to produce COMT-Met mice, which were compared with their wild-type littermates. The model proved highly specific: COMT-Met mice had reductions in COMT abundance and activity, compared with wild-type mice, explicitly in the absence of off-target changes in the expression of other genes. Despite robust alterations in dopamine metabolism, we found only subtle changes on certain cognitive tasks under baseline conditions (eg, increased spatial novelty preference in COMT-Met mice vs wild-type mice). However, genotype differences emerged after administration of the COMT inhibitor tolcapone: performance of wild-type mice, but not COMT-Met mice, was improved on the 5-choice serial reaction time task after tolcapone administration. There were no changes in anxiety-related behaviors in the tests that we used. Our findings are convergent with human studies of the Val158Met polymorphism, and suggest that COMT's effects are most prominent when the dopamine system is challenged. Finally, they demonstrate the importance of considering COMT genotype when examining the therapeutic potential of COMT inhibitors.


Asunto(s)
Catecol O-Metiltransferasa/genética , Catecol O-Metiltransferasa/metabolismo , Trastornos del Conocimiento/genética , Modelos Animales de Enfermedad , Metionina/genética , Polimorfismo de Nucleótido Simple/genética , Análisis de Varianza , Animales , Benzofenonas/farmacología , Benzofenonas/uso terapéutico , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Inhibidores de Catecol O-Metiltransferasa/farmacología , Inhibidores de Catecol O-Metiltransferasa/uso terapéutico , Conducta de Elección/efectos de los fármacos , Trastornos del Conocimiento/tratamiento farmacológico , Trastornos del Conocimiento/metabolismo , Conducta Exploratoria/efectos de los fármacos , Genotipo , Aprendizaje por Laberinto/efectos de los fármacos , Ratones , Ratones Transgénicos , Nitrofenoles/farmacología , Nitrofenoles/uso terapéutico , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/genética , Tolcapona , Valina/genética
5.
Diabetes ; 65(7): 1952-61, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26993066

RESUMEN

The transcription factor Sox4 has been proposed to underlie the increased type 2 diabetes risk linked to an intronic single nucleotide polymorphism in CDKAL1 In a mouse model expressing a mutant form of Sox4, glucose-induced insulin secretion is reduced by 40% despite normal intracellular Ca(2+) signaling and depolarization-evoked exocytosis. This paradox is explained by a fourfold increase in kiss-and-run exocytosis (as determined by single-granule exocytosis measurements) in which the fusion pore connecting the granule lumen to the exterior expands to a diameter of only 2 nm, which does not allow the exit of insulin. Microarray analysis indicated that this correlated with an increased expression of the exocytosis-regulating protein Stxbp6. In a large collection of human islet preparations (n = 63), STXBP6 expression and glucose-induced insulin secretion correlated positively and negatively with SOX4 expression, respectively. Overexpression of SOX4 in the human insulin-secreting cell EndoC-ßH2 interfered with granule emptying and inhibited hormone release, the latter effect reversed by silencing STXBP6 These data suggest that increased SOX4 expression inhibits insulin secretion and increased diabetes risk by the upregulation of STXBP6 and an increase in kiss-and-run exocytosis at the expense of full fusion. We propose that pharmacological interventions promoting fusion pore expansion may be effective in diabetes therapy.


Asunto(s)
Exocitosis/fisiología , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Factores de Transcripción SOXC/genética , Animales , Calcio/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Línea Celular , Diabetes Mellitus Tipo 2/metabolismo , Silenciador del Gen , Humanos , Secreción de Insulina , Masculino , Ratones , Factores de Transcripción SOXC/metabolismo , Regulación hacia Arriba
6.
Hum Mol Genet ; 24(14): 4114-25, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25908616

RESUMEN

The Moonwalker (Mwk) mouse is a model of dominantly inherited cerebellar ataxia caused by a gain-of-function mutation in the transient receptor potential (TRP) channel TRPC3. Here, we report impairments in dendritic growth and synapse formation early on during Purkinje cell development in the Mwk cerebellum that are accompanied by alterations in calcium signaling. To elucidate the molecular effector pathways that regulate Purkinje cell dendritic arborization downstream of mutant TRPC3, we employed transcriptomic analysis of developing Purkinje cells isolated by laser-capture microdissection. We identified significant gene and protein expression changes in molecules involved in lipid metabolism. Consistently, lipid homeostasis in the Mwk cerebellum was found to be disturbed, and treatment of organotypic cerebellar slices with ceramide significantly improved dendritic outgrowth of Mwk Purkinje cells. These findings provide the first mechanistic insights into the TRPC3-dependent mechanisms, by which activated calcium signaling is coupled to lipid metabolism and the regulation of Purkinje cell development in the Mwk cerebellum.


Asunto(s)
Señalización del Calcio , Ataxia Cerebelosa/genética , Cerebelo/fisiología , Metabolismo de los Lípidos , Canales Catiónicos TRPC/metabolismo , Animales , Ataxia Cerebelosa/patología , Cerebelo/metabolismo , Dendritas/metabolismo , Regulación de la Expresión Génica , Ratones , Células de Purkinje/metabolismo , Canales Catiónicos TRPC/genética , Transcriptoma
7.
Brain ; 138(Pt 5): 1167-81, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25753484

RESUMEN

Amyotrophic lateral sclerosis is a devastating neurodegenerative disorder characterized by the progressive loss of spinal motor neurons. While the aetiological mechanisms underlying the disease remain poorly understood, oxidative stress is a central component of amyotrophic lateral sclerosis and contributes to motor neuron injury. Recently, oxidation resistance 1 (OXR1) has emerged as a critical regulator of neuronal survival in response to oxidative stress, and is upregulated in the spinal cord of patients with amyotrophic lateral sclerosis. Here, we tested the hypothesis that OXR1 is a key neuroprotective factor during amyotrophic lateral sclerosis pathogenesis by crossing a new transgenic mouse line that overexpresses OXR1 in neurons with the SOD1(G93A) mouse model of amyotrophic lateral sclerosis. Interestingly, we report that overexpression of OXR1 significantly extends survival, improves motor deficits, and delays pathology in the spinal cord and in muscles of SOD1(G93A) mice. Furthermore, we find that overexpression of OXR1 in neurons significantly delays non-cell-autonomous neuroinflammatory response, classic complement system activation, and STAT3 activation through transcriptomic analysis of spinal cords of SOD1(G93A) mice. Taken together, these data identify OXR1 as the first neuron-specific antioxidant modulator of pathogenesis and disease progression in SOD1-mediated amyotrophic lateral sclerosis, and suggest that OXR1 may serve as a novel target for future therapeutic strategies.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Antioxidantes/metabolismo , Proteínas Mitocondriales/metabolismo , Neuronas Motoras/metabolismo , Proteínas Nucleares/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/mortalidad , Esclerosis Amiotrófica Lateral/patología , Animales , Antioxidantes/uso terapéutico , Supervivencia Celular/fisiología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Mitocondriales/genética , Neuronas Motoras/patología , Proteínas Nucleares/genética , Estrés Oxidativo/genética , Estrés Oxidativo/inmunología
8.
Elife ; 3: e04530, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-25415054

RESUMEN

Many intergenic long noncoding RNA (lncRNA) loci regulate the expression of adjacent protein coding genes. Less clear is whether intergenic lncRNAs commonly regulate transcription by modulating chromatin at genomically distant loci. Here, we report both genomically local and distal RNA-dependent roles of Dali, a conserved central nervous system expressed intergenic lncRNA. Dali is transcribed downstream of the Pou3f3 transcription factor gene and its depletion disrupts the differentiation of neuroblastoma cells. Locally, Dali transcript regulates transcription of the Pou3f3 locus. Distally, it preferentially targets active promoters and regulates expression of neural differentiation genes, in part through physical association with the POU3F3 protein. Dali interacts with the DNMT1 DNA methyltransferase in mouse and human and regulates DNA methylation status of CpG island-associated promoters in trans. These results demonstrate, for the first time, that a single intergenic lncRNA controls the activity and methylation of genomically distal regulatory elements to modulate large-scale transcriptional programmes.


Asunto(s)
Diferenciación Celular/genética , Epigénesis Genética , Neuronas/citología , Neuronas/metabolismo , ARN Largo no Codificante/metabolismo , Animales , Linaje de la Célula/genética , Cromatina/metabolismo , Secuencia Conservada/genética , Metilación de ADN/genética , Técnicas de Silenciamiento del Gen , Sitios Genéticos , Humanos , Ratones Endogámicos C57BL , Regiones Promotoras Genéticas , Unión Proteica/genética , ARN Largo no Codificante/genética , ARN Mensajero/metabolismo , Transcripción Genética
9.
PLoS One ; 9(8): e105933, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25162227

RESUMEN

Members of the AFF (AF4/FMR2) family of putative transcription factors are involved in infant acute leukaemia and intellectual disability (ID), although very little is known about their transcriptional targets. For example, deletion of human lymphoid nuclear protein related to AF4/AFF member 3 (LAF4/AFF3) is known to cause severe neurodevelopmental defects, and silencing of the gene is also associated with ID at the folate-sensitive fragile site (FSFS) FRA2A; yet the normal function of this gene in the nervous system is unclear. The aim of this study was to further investigate the function of Laf4 in the brain by focusing on its role in the cortex. By manipulating expression levels in organotypic slices, we demonstrate here that Laf4 is required for normal cellular migration in the developing cortex and have subsequently identified Mdga2, an important structural protein in neurodevelopment, as a target of Laf4 transcriptional activity. Furthermore, we show that the migration deficit caused by loss of Laf4 can be partially rescued by Mdga2 over-expression, revealing an important functional relationship between these genes. Our study demonstrates the key transcriptional role of Laf4 during early brain development and reveals a novel function for the gene in the process of cortical cell migration relevant to the haploinsufficiency and silencing observed in human neurodevelopmental disorders.


Asunto(s)
Corteza Cerebral/metabolismo , Proteínas Ligadas a GPI/genética , Moléculas de Adhesión de Célula Nerviosa/genética , Neuronas/metabolismo , Proteínas Nucleares/genética , Animales , Animales Recién Nacidos , Movimiento Celular , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/patología , Embrión de Mamíferos , Proteínas Ligadas a GPI/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Ratones , Ratones Transgénicos , Microtomía , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neurogénesis/genética , Neuronas/patología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Unión Proteica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Técnicas de Cultivo de Tejidos , Factores de Transcripción , Transcripción Genética
10.
PLoS One ; 9(5): e97162, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24842286

RESUMEN

Single nucleotide polymorphisms in the first intron of the fat-mass-and-obesity-related gene FTO are associated with increased body weight and adiposity. Increased expression of FTO is likely underlying this obesity phenotype, as mice with two additional copies of Fto (FTO-4 mice) exhibit increased adiposity and are hyperphagic. FTO is a demethylase of single stranded DNA and RNA, and one of its targets is the m6A modification in RNA, which might play a role in the regulation of gene expression. In this study, we aimed to examine the changes in gene expression that occur in FTO-4 mice in order to gain more insight into the underlying mechanisms by which FTO influences body weight and adiposity. Our results indicate an upregulation of anabolic pathways and a downregulation of catabolic pathways in FTO-4 mice. Interestingly, although genes involved in methylation were differentially regulated in skeletal muscle of FTO-4 mice, no effect of FTO overexpression on m6A methylation of total mRNA was detected.


Asunto(s)
Oxigenasas de Función Mixta/metabolismo , Oxo-Ácido-Liasas/metabolismo , Adiposidad/genética , Adiposidad/fisiología , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Animales , Células Cultivadas , Expresión Génica , Ratones , Ratones Endogámicos C57BL , Oxigenasas de Función Mixta/genética , Músculo Esquelético/metabolismo , Obesidad/genética , Obesidad/metabolismo , Oxo-Ácido-Liasas/genética , Polimorfismo de Nucleótido Simple/genética
11.
EMBO J ; 33(4): 296-311, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24488179

RESUMEN

Although some long noncoding RNAs (lncRNAs) have been shown to regulate gene expression in cis, it remains unclear whether lncRNAs can directly regulate transcription in trans by interacting with chromatin genome-wide independently of their sites of synthesis. Here, we describe the genomically local and more distal functions of Paupar, a vertebrate-conserved and central nervous system-expressed lncRNA transcribed from a locus upstream of the gene encoding the PAX6 transcription factor. Knockdown of Paupar disrupts the normal cell cycle profile of neuroblastoma cells and induces neural differentiation. Paupar acts in a transcript-dependent manner both locally, to regulate Pax6, as well as distally by binding and regulating genes on multiple chromosomes, in part through physical association with PAX6 protein. Paupar binding sites are enriched near promoters and can function as transcriptional regulatory elements whose activity is modulated by Paupar transcript levels. Our findings demonstrate that a lncRNA can function in trans at transcriptional regulatory elements distinct from its site of synthesis to control large-scale transcriptional programmes.


Asunto(s)
Proteínas del Ojo/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Factores de Transcripción Paired Box/genética , ARN Largo no Codificante/fisiología , Proteínas Represoras/genética , Animales , Sitios de Unión , Línea Celular Tumoral , Cromatina/metabolismo , Secuencia Conservada , Proteínas del Ojo/biosíntesis , Perfilación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes cdc , Estudio de Asociación del Genoma Completo , Proteínas de Homeodominio/biosíntesis , Ratones , Proteínas del Tejido Nervioso/genética , Neuroblastoma/patología , Neurogénesis , Neuronas/metabolismo , Factor de Transcripción PAX6 , Factores de Transcripción Paired Box/biosíntesis , Unión Proteica , ARN Largo no Codificante/antagonistas & inhibidores , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Interferente Pequeño/farmacología , Elementos Reguladores de la Transcripción , Proteínas Represoras/biosíntesis , Transcripción Genética , Transfección
12.
Proc Natl Acad Sci U S A ; 110(9): 3555-60, 2013 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-23401504

RESUMEN

The subplate zone is a highly dynamic transient sector of the developing cerebral cortex that contains some of the earliest generated neurons and the first functional synapses of the cerebral cortex. Subplate cells have important functions in early establishment and maturation of thalamocortical connections, as well as in the development of inhibitory cortical circuits in sensory areas. So far no role has been identified for cells in the subplate in the mature brain and disease association of the subplate-specific genes has not been analyzed systematically. Here we present gene expression evidence for distinct roles of the mouse subplate across development as well as unique molecular markers to extend the repertoire of subplate labels. Performing systematic comparisons between different ages (embryonic days 15 and 18, postnatal day 8, and adult), we reveal the dynamic and constant features of the markers labeling subplate cells during embryonic and early postnatal development and in the adult. This can be visualized using the online database of subplate gene expression at https://molnar.dpag.ox.ac.uk/subplate/. We also identify embryonic similarities in gene expression between the ventricular zones, intermediate zone, and subplate, and distinct postnatal similarities between subplate, layer 5, and layers 2/3. The genes expressed in a subplate-specific manner at some point during development show a statistically significant enrichment for association with autism spectrum disorders and schizophrenia. Our report emphasizes the importance of the study of transient features of the developing brain to better understand neurodevelopmental disorders.


Asunto(s)
Trastorno Autístico/genética , Corteza Cerebral/metabolismo , Perfilación de la Expresión Génica , Redes Reguladoras de Genes/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Esquizofrenia/genética , Animales , Animales Recién Nacidos , Corteza Cerebral/embriología , Corteza Cerebral/patología , Regulación del Desarrollo de la Expresión Génica , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos/genética , Mapas de Interacción de Proteínas/genética , Factores de Tiempo
13.
Elife ; 1: e00205, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23256043

RESUMEN

CpG islands (CGIs) are associated with most mammalian gene promoters. A subset of CGIs act as polycomb response elements (PREs) and are recognized by the polycomb silencing systems to regulate expression of genes involved in early development. How CGIs function mechanistically as nucleation sites for polycomb repressive complexes remains unknown. Here we discover that KDM2B (FBXL10) specifically recognizes non-methylated DNA in CGIs and recruits the polycomb repressive complex 1 (PRC1). This contributes to histone H2A lysine 119 ubiquitylation (H2AK119ub1) and gene repression. Unexpectedly, we also find that CGIs are occupied by low levels of PRC1 throughout the genome, suggesting that the KDM2B-PRC1 complex may sample CGI-associated genes for susceptibility to polycomb-mediated silencing. These observations demonstrate an unexpected and direct link between recognition of CGIs by KDM2B and targeting of the polycomb repressive system. This provides the basis for a new model describing the functionality of CGIs as mammalian PREs.DOI:http://dx.doi.org/10.7554/eLife.00205.001.


Asunto(s)
Proteínas F-Box/genética , Silenciador del Gen , Genoma , Histona Demetilasas con Dominio de Jumonji/genética , Proteínas del Grupo Polycomb/genética , Animales , Línea Celular Tumoral , Islas de CpG , Metilación de ADN , Proteínas F-Box/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones , Proteínas del Grupo Polycomb/metabolismo , Ubiquitinación
14.
Genome Biol ; 13(11): R102, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-23153069

RESUMEN

BACKGROUND: Recent reports have highlighted instances of mRNAs that, in addition to coding for protein, regulate the abundance of related transcripts by altering microRNA availability. These two mRNA roles - one mediated by RNA and the other by protein - are inter-dependent and hence cannot easily be separated. Whether the RNA-mediated role of transcripts is important, per se, or whether it is a relatively innocuous consequence of competition by different transcripts for microRNA binding remains unknown. RESULTS: Here we took advantage of 48 loci that encoded proteins in the earliest eutherian ancestor, but whose protein-coding capability has since been lost specifically during rodent evolution. Sixty-five percent of such loci, which we term 'unitary pseudogenes', have retained their expression in mouse and their transcripts exhibit conserved tissue expression profiles. The maintenance of these unitary pseudogenes' spatial expression profiles is associated with conservation of their microRNA response elements and these appear to preserve the post-transcriptional roles of their protein-coding ancestor. We used mouse Pbcas4, an exemplar of these transcribed unitary pseudogenes, to experimentally test our genome-wide predictions. We demonstrate that the role of Pbcas4 as a competitive endogenous RNA has been conserved and has outlived its ancestral gene's loss of protein-coding potential. CONCLUSIONS: These results show that post-transcriptional regulation by bifunctional mRNAs can persist over long evolutionary time periods even after their protein coding ability has been lost.


Asunto(s)
Secuencia Conservada , Seudogenes , ARN Mensajero/metabolismo , Roedores/genética , Animales , Secuencia de Bases , Línea Celular , Perros , Perfilación de la Expresión Génica , Humanos , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Datos de Secuencia Molecular , Filogenia , Procesamiento Postranscripcional del ARN
15.
Curr Biol ; 22(4): 314-9, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22264613

RESUMEN

Sleep and circadian rhythm disruption has been widely observed in neuropsychiatric disorders including schizophrenia [1] and often precedes related symptoms [2]. However, mechanistic basis for this association remains unknown. Therefore, we investigated the circadian phenotype of blind-drunk (Bdr), a mouse model of synaptosomal-associated protein (Snap)-25 exocytotic disruption that displays schizophrenic endophenotypes modulated by prenatal factors and reversible by antipsychotic treatment [3, 4]. Notably, SNAP-25 has been implicated in schizophrenia from genetic [5-8], pathological [9-13], and functional studies [14-16]. We show here that the rest and activity rhythms of Bdr mice are phase advanced and fragmented under a light/dark cycle, reminiscent of the disturbed sleep patterns observed in schizophrenia. Retinal inputs appear normal in mutants, and clock gene rhythms within the suprachiasmatic nucleus (SCN) are normally phased both in vitro and in vivo. However, the 24 hr rhythms of arginine vasopressin within the SCN and plasma corticosterone are both markedly phase advanced in Bdr mice. We suggest that the Bdr circadian phenotype arises from a disruption of synaptic connectivity within the SCN that alters critical output signals. Collectively, our data provide a link between disruption of circadian activity cycles and synaptic dysfunction in a model of neuropsychiatric disease.


Asunto(s)
Arginina Vasopresina/metabolismo , Ritmo Circadiano , Corticosterona/metabolismo , Actividad Motora , Esquizofrenia/metabolismo , Núcleo Supraquiasmático/química , Adulto , Animales , Corticosterona/sangre , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Análisis por Micromatrices , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Esquizofrenia/genética , Sueño , Proteína 25 Asociada a Sinaptosomas/genética , Proteína 25 Asociada a Sinaptosomas/metabolismo , Grabación de Cinta de Video
16.
Cereb Cortex ; 22(6): 1343-59, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21862448

RESUMEN

The subplate layer of the cerebral cortex is comprised of a heterogeneous population of cells and contains some of the earliest-generated neurons. In the embryonic brain, subplate cells contribute to the guidance and areal targeting of thalamocortical axons. At later developmental stages, they are predominantly involved in the maturation and plasticity of the cortical circuitry and the establishment of functional modules. We aimed to further characterize the embryonic murine subplate population by establishing a gene expression profile at embryonic day (E) 15.5 using laser capture microdissection and microarrays. The microarray identified over 300 transcripts with higher expression in the subplate compared with the cortical plate at this stage. Using quantitative reverse transcription-polymerase chain reaction, in situ hybridization (ISH), and immunohistochemistry (IHC), we have confirmed specific expression in the E15.5 subplate for 13 selected genes, which have not been previously associated with this compartment (Abca8a, Cdh10, Cdh18, Csmd3, Gabra5, Kcnt2, Ogfrl1, Pls3, Rcan2, Sv2b, Slc8a2, Unc5c, and Zdhhc2). In the reeler mutant, the expression of the majority of these genes (9 of 13) was shifted in accordance with the altered position of subplate. These genes belong to several functional groups and likely contribute to synapse formation and axonal growth and guidance in subplate cells.


Asunto(s)
Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Regulación del Desarrollo de la Expresión Génica , Animales , Animales Recién Nacidos , Técnicas de Sustitución del Gen , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes Neurológicos
17.
PLoS One ; 6(11): e27968, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22140494

RESUMEN

Single-nucleotide polymorphisms in the first intron of the ubiquitously expressed FTO gene are associated with obesity. Although the physiological functions of FTO remain unclear, food intake is often altered when Fto expression levels are manipulated. Furthermore, deletion of FTO from neurones alone has a similar effect on food intake to deletion of FTO in all tissues. These results indicate that FTO expression in the brain is particularly important. Considerable focus has been placed on the dynamic regulation of Fto mRNA expression in the hypothalamus after short-term (16-48 hour) fasting, but results have been controversial. There are no studies that quantify FTO protein levels across the brain, and assess its alteration following short-term fasting. Using immunohistochemistry, we found that FTO protein is widely expressed in mouse brain, and present in the majority of neurones. Using quantitative Western blotting and RT-qPCR we show that FTO protein and mRNA levels in the hypothalamus, cerebellum and rostral brain are relatively uniform, and levels in the brain are higher than in skeletal muscles of the lower limbs. Fasting for 18 hours does not alter the expression pattern, or levels, of FTO protein and mRNA. We further show that the majority of POMC neurones, which are critically involved in food intake regulation, also express FTO, but that the percentage of FTO-positive POMC neurones is not altered by fasting. In summary, we find no evidence that Fto/FTO expression is regulated by short-term (18-hour) fasting. Thus, it is unlikely that the hunger and increased post-fasting food intake caused by such food deprivation is driven by alterations in Fto/FTO expression. The widespread expression of FTO in neurones also suggests that physiological studies of this protein should not be limited to the hypothalamus.


Asunto(s)
Encéfalo/metabolismo , Ayuno/metabolismo , Regulación de la Expresión Génica , Neuronas/metabolismo , Oxo-Ácido-Liasas/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato , Animales , Encéfalo/citología , Conducta Alimentaria/fisiología , Ratones , Ratones Endogámicos C57BL , Oxigenasas de Función Mixta , Oxo-Ácido-Liasas/metabolismo , Proopiomelanocortina/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
Hepatology ; 52(2): 443-53, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20683944

RESUMEN

UNLABELLED: Hepatitis C virus (HCV) is a major cause of liver disease but the full impact of HCV infection on the hepatocyte is poorly understood. RNA sequencing (RNA-Seq) is a novel method to analyze the full transcriptional activity of a cell or tissue, thus allowing new insight into the impact of HCV infection. We conducted the first full-genome RNA-Seq analysis in a host cell to analyze infected and noninfected cells, and compared this to microarray and proteomic analyses. The combined power of the triple approach revealed that HCV infection affects a number of previously unreported canonical pathways and biological functions, including pregnane X receptor/retinoic acid receptor activation as a potential host antiviral response, and integrin-linked kinase signaling as an entry factor. This approach also identified several mechanisms implicated in HCV pathogenesis, including an increase in reactive oxygen species. HCV infection had a broad effect on cellular metabolism, leading to increases in cellular cholesterol and free fatty acid levels, associated with a profound and specific decrease in cellular glucose levels. CONCLUSION: RNA-Seq technology, especially when combined with established methods, demonstrated that HCV infection has potentially wide-ranging effects on cellular gene and protein expression. This in vitro study indicates a substantial metabolic impact of HCV infection and highlights new mechanisms of virus-host interaction which may be highly relevant to pathogenesis in vivo.


Asunto(s)
Perfilación de la Expresión Génica , Hepatitis C/genética , Hepatitis C/metabolismo , Análisis por Micromatrices , Proteoma , Células Cultivadas
19.
Hum Mol Genet ; 19(3): 420-33, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-19884170

RESUMEN

The childhood motor neuron disease spinal muscular atrophy (SMA) results from reduced expression of the survival motor neuron (SMN) gene. Previous studies using in vitro model systems and lower organisms have suggested that low levels of Smn protein disrupt prenatal developmental processes in lower motor neurons, influencing neuronal outgrowth, axon branching and neuromuscular connectivity. The extent to which these developmental pathways contribute to selective vulnerability and pathology in the mammalian neuromuscular system in vivo remains unclear. Here, we have investigated the pre-symptomatic development of neuromuscular connectivity in differentially vulnerable motor neuron populations in Smn(-/-);SMN2 mice, a model of severe SMA. We show that reduced Smn levels have no detectable effect on morphological correlates of pre-symptomatic development in either vulnerable or stable motor units, indicating that abnormal pre-symptomatic developmental processes are unlikely to be a prerequisite for subsequent pathological changes to occur in vivo. Microarray analyses of spinal cord from two different severe SMA mouse models demonstrated that only minimal changes in gene expression were present in pre-symptomatic mice. In stark contrast, microarray analysis of late-symptomatic spinal cord revealed widespread changes in gene expression, implicating extracellular matrix integrity, growth factor signalling and myelination pathways in SMA pathogenesis. Taken together, these data suggest that reduced Smn levels induce SMA pathology by instigating rapidly progressive neurodegenerative pathways in lower motor neurons around the time of disease onset rather than by modulating pre-symptomatic neurodevelopmental pathways.


Asunto(s)
Modelos Animales de Enfermedad , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/patología , Animales , Progresión de la Enfermedad , Femenino , Expresión Génica , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Neuronas Motoras/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Transducción de Señal , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
20.
PLoS Genet ; 5(12): e1000773, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20019802

RESUMEN

Spinal muscular atrophy is a severe motor neuron disease caused by inactivating mutations in the SMN1 gene leading to reduced levels of full-length functional SMN protein. SMN is a critical mediator of spliceosomal protein assembly, and complete loss or drastic reduction in protein leads to loss of cell viability. However, the reason for selective motor neuron degeneration when SMN is reduced to levels which are tolerated by all other cell types is not currently understood. Widespread splicing abnormalities have recently been reported at end-stage in a mouse model of SMA, leading to the proposition that disruption of efficient splicing is the primary mechanism of motor neuron death. However, it remains unclear whether splicing abnormalities are present during early stages of the disease, which would be a requirement for a direct role in disease pathogenesis. We performed exon-array analysis of RNA from SMN deficient mouse spinal cord at 3 time points, pre-symptomatic (P1), early symptomatic (P7), and late-symptomatic (P13). Compared to littermate control mice, SMA mice showed a time-dependent increase in the number of exons showing differential expression, with minimal differences between genotypes at P1 and P7, but substantial variation in late-symptomatic (P13) mice. Gene ontology analysis revealed differences in pathways associated with neuronal development as well as cellular injury. Validation of selected targets by RT-PCR confirmed the array findings and was in keeping with a shift between physiologically occurring mRNA isoforms. We conclude that the majority of splicing changes occur late in SMA and may represent a secondary effect of cell injury, though we cannot rule out significant early changes in a small number of transcripts crucial to motor neuron survival.


Asunto(s)
Empalme Alternativo/genética , Atrofia Muscular Espinal/patología , Animales , Modelos Animales de Enfermedad , Exones , Regulación de la Expresión Génica , Ratones , Neuronas Motoras , Isoformas de Proteínas , ARN Mensajero/análisis , Médula Espinal , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA