Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
SIAM J Imaging Sci ; 16(2): 886-910, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-39144526

RESUMEN

Single-particle cryo-electron microscopy (cryo-EM) has recently joined X-ray crystallography and NMR spectroscopy as a high-resolution structural method to resolve biological macromolecules. In a cryo-EM experiment, the microscope produces images called micrographs. Projections of the molecule of interest are embedded in the micrographs at unknown locations, and under unknown viewing directions. Standard imaging techniques first locate these projections (detection) and then reconstruct the 3-D structure from them. Unfortunately, high noise levels hinder detection. When reliable detection is rendered impossible, the standard techniques fail. This is a problem, especially for small molecules. In this paper, we pursue a radically different approach: we contend that the structure could, in principle, be reconstructed directly from the micrographs, without intermediate detection. The aim is to bring small molecules within reach for cryo-EM. To this end, we design an autocorrelation analysis technique that allows one to go directly from the micrographs to the sought structures. This involves only one pass over the micrographs, allowing online, streaming processing for large experiments. We show numerical results and discuss challenges that lay ahead to turn this proof-of-concept into a complementary approach to state-of-the-art algorithms.

2.
Inf inference ; 11(2): 533-555, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35966813

RESUMEN

We study super-resolution multi-reference alignment, the problem of estimating a signal from many circularly shifted, down-sampled and noisy observations. We focus on the low SNR regime, and show that a signal in ℝ M is uniquely determined when the number L of samples per observation is of the order of the square root of the signal's length ( L = O ( M ) ). Phrased more informally, one can square the resolution. This result holds if the number of observations is proportional to 1/SNR3. In contrast, with fewer observations recovery is impossible even when the observations are not down-sampled (L = M). The analysis combines tools from statistical signal processing and invariant theory. We design an expectation-maximization algorithm and demonstrate that it can super-resolve the signal in challenging SNR regimes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA