Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Transl Res ; 15(7): 4487-4503, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560208

RESUMEN

BACKGROUND: Obstructive sleep apnea (OSA) and osteoarthritis (OA) are highly prevalent and seriously affect the patient's quality of life. Patients with OSA have a high incidence of OA, however, the underlying mechanism remains unclear. Here, we investigated the molecular link between OSA and OA via bioinformatics analysis and experimental validation. METHODS: We downloaded a peripheral blood monocyte microarray profile (GSE75097) for patients with OSA and two synovial microarray profiles (GSE55235 and GSE55457) for patients with OA from the Gene Expression Omnibus database. We identified OSA-associated differentially expressed genes (OSA-DEGs) in patients with OA. Additionally, we constructed protein-protein interaction networks to identify the key genes involved in OA. Immunohistochemistry was performed to verify the expression of key genes in OA rat models. RNA interference assay was performed to validate the effects of key genes on synovial cells. Gene-miRNA, gene-transcription factor, and gene-drug networks were constructed to predict the regulatory molecules and drugs for OA. RESULTS: Fifteen OSA-DEGs screened using the threshold criteria were enriched in the tumor necrosis factor (TNF) pathway. Combining the 12 algorithms of CytoHubba, we identified JUNB, JUN, dual specificity phosphatase 1 (DUSP1), and TNF-alpha-induced protein 3 (TNFAIP3) as the key OSA-DEGs involved in OA development. Immunohistochemistry and quantitative polymerase chain reaction revealed that these key genes were downregulated in the OA synovium, promoting TNF-α expression. Therefore, OSA-DEGs, JUN, JUNB, DUSP1, and TNFAIP3 function in OA by increasing TNF-α expression. Our findings provide insights on the mechanisms underlying the effects of OSA on OA.

2.
Nanoscale ; 13(2): 1220-1230, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33404038

RESUMEN

Even though immunological checkpoint inhibitors have demonstrated a potent anti-tumor effect in clinical practice, the low immunogenicity of the majority of tumors still results in a lower response rate and a higher resistance to mono-immunotherapy. Recent studies revealed that immunogenic cell death (ICD) augments T cell responses against some cancers, thus indicating that this combination therapy may further improve the anti-tumor immunity produced by anti-PD-1/PD-L1. Herein a robust synergetic strategy is reported to integrate the activation of necroptotic cell death and the subsequent using of immune checkpoint inhibitors. Liposomes have good biocompatibility and are widely used as drug carriers. Using liposomes as TNF-α-loaded nanoplatforms achieves in vivo tumor targeting and long-term retention in the tumor microenvironment. Tumor cells treated with TNF-α-loaded liposomes exhibited the hallmarks of ICD including the release of high mobility group box 1 (HMGB1) and lactate dehydrogenase (LDH). Additionally, the tumor cell necrosis caused by TNF-α induces the in situ release of tumor-specific antigens, thus increasing the dendritic cell (DC) activation and T cell infiltration when combined with the checkpoint blockade therapy. Collectively, significant tumor reduction is accomplishable by this synergetic strategy, in which TNF-α-loaded liposomes convert the tumor cell into an endogenous vaccine and improve the anti-tumor immunity of anti-PD-1/PD-L1.


Asunto(s)
Inmunoterapia , Neoplasias , Muerte Celular , Humanos , Neoplasias/tratamiento farmacológico , Receptor de Muerte Celular Programada 1 , Microambiente Tumoral
3.
Nano Lett ; 19(11): 8049-8058, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31558023

RESUMEN

Pyroptosis is a lytic and inflammatory form of programmed cell death and could be induced by chemotherapy drugs via caspase-3 mediation. However, the key protein gasdermin E (GSDME, translated by the DFNA5 gene) during the caspase-3-mediated pyroptosis process is absent in most tumor cells because of the hypermethylation of DFNA5 (deafness autosomal dominant 5) gene. Here, we develop a strategy of combining decitabine (DAC) with chemotherapy nanodrugs to trigger pyroptosis of tumor cells by epigenetics, further enhancing the immunological effect of chemotherapy. DAC is pre-performed with specific tumor-bearing mice for demethylation of the DFNA5 gene in tumor cells. Subsequently, a commonly used tumor-targeting nanoliposome loaded with cisplatin (LipoDDP) is used to administrate drugs for activating the caspase-3 pathway in tumor cells and trigger pyroptosis. Experiments demonstrate that the reversal of GSDME silencing in tumor cells is achieved and facilitates the occurrence of pyroptosis. According to the anti-tumor activities, anti-metastasis results, and inhibition of recurrence, this pyroptosis-based chemotherapy strategy enhances immunological effects of chemotherapy and also provides an important insight into tumor immunotherapy.


Asunto(s)
Antimetabolitos Antineoplásicos/uso terapéutico , Cisplatino/uso terapéutico , Decitabina/uso terapéutico , Epigénesis Genética/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Piroptosis/efectos de los fármacos , Animales , Antimetabolitos Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Cisplatino/administración & dosificación , Decitabina/administración & dosificación , Sistemas de Liberación de Medicamentos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Liposomas , Ratones , Ratones Endogámicos BALB C , Neoplasias/genética , Receptores de Estrógenos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...