Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Chem Theory Comput ; 20(2): 551-557, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38175913

RESUMEN

Calculations of excited states in the Green's function formalism often invokes the diagonal approximation, in which the quasiparticle states are taken from a mean-field calculation. In this paper, we extend the stochastic approaches applied in the many-body perturbation theory and overcome this limitation for large systems in which we are interested in a small subset of states. We separate the problem into a core subspace whose coupling to the remainder of the system environment is stochastically sampled. This method is exemplified on computing hole injection energies into CO2 on an extended gold surface with nearly 3000 electrons. We find that in the extended system the size of the problem can be compressed up to 95% using stochastic sampling. This result provides a way forward for self-consistent stochastic methods and determination of Dyson orbitals in large systems.

2.
J Phys Chem Lett ; 14(38): 8470-8476, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37721434

RESUMEN

Charge injection into a molecule on a metallic interface is a key step in many photoactivated reactions. We employ the many-body perturbation theory and compute the hole and electron injection energies for CO2 molecule on an Au nanoparticle with ∼3,000 electrons and compare it to results for idealized infinite surfaces. We demonstrate a surprisingly large variation of the injection energy barrier depending on the precise molecular position on the surface. Multiple "hot spots," characterized by low energy barriers, arise due to the competition between the plasmonic coupling and the degree of hybridization between the molecule and the substrate. The charge injection barrier to the adsorbate on the nanoparticle surface decreases from the facet edge to the facet center. This finding contrasts with the typical picture in which the electric field enhancement on the nanoparticle edges is considered the most critical factor.

3.
Nat Commun ; 9(1): 2998, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30065278

RESUMEN

The growing interest in two-dimensional imine-based covalent organic frameworks (COFs) is inspired by their crystalline porous structures and the potential for extensive π-electron delocalization. The intrinsic reversibility and strong polarization of imine linkages, however, leads to insufficient chemical stability and optoelectronic properties. Developing COFs with improved robustness and π-delocalization is highly desirable but remains an unsettled challenge. Here we report a facile strategy that transforms imine-linked COFs into ultrastable porous aromatic frameworks by kinetically fixing the reversible imine linkage via an aza-Diels-Alder cycloaddition reaction. The as-formed, quinoline-linked COFs not only retain crystallinity and porosity, but also display dramatically enhanced chemical stability over their imine-based COF precursors, rendering them among the most robust COFs up-to-date that can withstand strong acidic, basic and redox environment. Owing to the chemical diversity of the cycloaddition reaction and structural tunability of COFs, the pores of COFs can be readily engineered to realize pre-designed surface functionality.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...