Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Front Plant Sci ; 15: 1429548, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39280953

RESUMEN

In arid regions, water scarcity, land degradation and groundwater pollution caused by excessive fertilization are the main constraints to sustainable agricultural production. Optimizing irrigation and fertilizer management regime is an effective means of improving crop water and fertilizer productivity as well as reducing negative impacts on the ecosystem. In order to investigate the effects of different irrigation and nitrogen (N) fertilizer rates on sunflower growth, yield, and water and N use efficiency, and to determine the optimal water and N management strategy, a two-year (2021 and 2022) field experiment with under-mulched drip irrigation was conducted in the Hexi Oasis area of Northwest China. The experiment design comprised three irrigation levels (W1, 55%-65% FC, where FC represents field water capacity; W2, 65%-75% FC; W3, 75%-85% FC) and three N application levels (N1, 120 kg ha-1; N2, 180 kg ha-1; N3, 240 kg ha-1), resulting in a total of nine treatments. The findings indicated that increasing irrigation and N application rates led to improvements in leaf area index (15.39%-66.14%), dry matter accumulation (11.43%-53.15%), water consumption (ET, 1.63%-42.90%) and sunflower yield (6.85%-36.42%), in comparison to the moderate water deficit and low N application (W1N1) treatment. However, excess water and N inputs did not produce greater yield gains and significantly decreased both water use efficiency (WUE) and nitrogen partial factor productivity (NPFP). Additionally, a multiple regression model was developed with ET and N application as explanatory variables and yield, WUE and NPFP as response variables. The results based on the regression model combined with spatial analysis showed that an ET range of 334.3-348.7 mm and N application rate of 160.9-175.3 kg ha-1 achieved an optimal balance between the multiple production objectives: yield, WUE and NPFP. Among the different irrigation and N management strategies we evaluated, we found that W2N2 (65%-75% FC and 180 kg N ha-1) was the most fruitful considering yield, resource use efficiency, etc. This result can serve as a theoretical reference for developing appropriate irrigation and N fertilization regimes for sunflower cultivation in the oasis agricultural area of northwest China.

2.
Plants (Basel) ; 13(14)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39065454

RESUMEN

As one of the most important food crops, the potato is widely planted in the oasis agricultural region of Northwest China. To ascertain the impact of regulated deficit irrigation (RDI) on various facets including dry matter accumulation, tuber yield, quality and water use efficiency (WUE) of potato plants, a two-growth season field experiment under mulched drip irrigation was conducted in the desert oasis region of Northwest China. Water deficits, applied at the seedling, tuber formation, tuber expansion and starch accumulation stages, encompassed two distinctive levels: mild (55-65% of field capacity, FC) and moderate (45-55% FC) deficit, with full irrigation (65-75% FC) throughout the growing season as the control (CK). The results showed that water deficit significantly reduced (p < 0.05) above-ground dry matter, water consumption and tuber yield compared to CK, and the reduction increased with the increasing water deficit. A mild water deficit at the tuber formation stage, without significantly reducing (p > 0.05) yield, could significantly increase WUE and irrigation water use efficiency (IWUE), with two-year average increases of 25.55% and 32.33%, respectively, compared to CK. Water deficit at the tuber formation stage increased starch content, whereas water deficit at tuber expansion stage significantly reduced starch, protein and reducing sugar content. Additionally, a comprehensive evaluation showed that a mild water deficit at the tuber formation stage is the optimal RDI strategy for potato production, providing a good balance between yield, quality and WUE. The results of this study can provide theoretical support for efficient and sustainable potato production in the desert oasis regions of Northwest China.

3.
Plants (Basel) ; 13(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732456

RESUMEN

Residual film pollution and excessive nitrogen fertilizer have become limiting factors for agricultural development. To investigate the feasibility of replacing conventional plastic film with biodegradable plastic film in cold and arid environments under nitrogen application conditions, field experiments were conducted from 2021 to 2022 with plastic film covering (including degradable plastic film (D) and ordinary plastic film (P)) combined with nitrogen fertilizer 0 (N0), 160 (N1), 320 (N2), and 480 (N3) kg·ha-1. The results showed no significant difference (p > 0.05) in dry matter accumulation, photosynthetic gas exchange parameters, soil enzyme activity, or yield of spring maize under degradable plastic film cover compared to ordinary plastic film cover. Nitrogen fertilizer is the main factor limiting the growth of spring maize. The above-ground and root biomass showed a trend of increasing and then decreasing with the increase in nitrogen application level. Increasing nitrogen fertilizer can also improve the photosynthetic gas exchange parameters of leaves, maintain soil enzyme activity, and reduce soil pH. Under the nitrogen application level of N2, the yield of degradable plastic film and ordinary plastic film coverage increased by 3.74~42.50% and 2.05~40.02%, respectively. At the same time, it can also improve water use efficiency and irrigation water use efficiency, but it will reduce nitrogen fertilizer partial productivity and nitrogen fertilizer agronomic use efficiency. Using multiple indicators to evaluate the effect of plastic film mulching combined with nitrogen fertilizer on the comprehensive growth of spring maize, it was found that the DN2 treatment had the best complete growth of maize, which was the best model for achieving stable yield and income increase and green development of spring maize in cold and cool irrigation areas.

4.
Front Plant Sci ; 14: 1280347, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38046602

RESUMEN

In arid regions, deficit irrigation stands as an efficacious strategy for augmenting agricultural water conservation and fostering sustainable crop production. The Hexi Oasis, an irrigation zone situated in Northwest China, serves as a pivotal area to produce grain and cash crops. Nonetheless, due to the predominant conditions of low rainfall and high evaporation, the scarcity of irrigation water has emerged as a critical constraint affecting crop growth and yield in the area. In order to evaluate the effects of deficit irrigation on photosynthetic characteristics, yield, quality, and water use efficiency of sunflower, a two-year field experiment with under-mulched drip irrigation was conducted in the cold and arid environment of the Hexi Oasis region. Water deficits were implemented at sunflower seedling and maturity and consisted of three deficit levels: mild deficit (65-75% field capacity, FC), moderate deficit (55-65% FC), and severe deficit (45-55% FC). A total of six combined water deficit treatments were applied, using full irrigation (75-85% FC) throughout the entire crop-growing season as the control (CK). The results illustrated that water deficit engendered a decrease in leaf net photosynthetic rate, transpiration rate, and stomatal conductance of sunflower compared to CK, with the decrease becoming significant with the water deficit increasing. A mild water deficit, both at the seedling and maturity phases, precipitated a significant enhancement (p< 0.05) in leaf water use efficiency. Under mild water deficit, stomatal limitation emerged as the predominant factor inducing a reduction in the photosynthetic capacity of sunflower leaves, while as the water deficit escalated, non-stomatal limitation progressively assumed dominance. Moreover, a mild/moderate water deficit at seedling and a mild water deficit at maturity (WD1 and WD3) significantly improved sunflower seed quality under consistent yield conditions and significantly increased irrigation water use efficiency, with an average increase of 15.3% and 18.5% over the two years, respectively. Evaluations utilizing principal component analysis and membership function methods revealed that WD1 attained the highest comprehensive score. Consequently, a mild water deficit at both seedling and maturity (WD1) is advocated as the optimal deficit irrigation strategy for sunflower production within the cold and arid environment of Northwest China.

5.
Front Plant Sci ; 14: 1153835, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37396646

RESUMEN

To investigate the evapotranspiration and crop coefficient of oasis watermelon under water deficit (WD), mild (60%-70% field capacity, FC)and moderate (50%-60% FC) WD levels were set up at the various growth stages of watermelon, including seedling stage (SS), vine stage (VS), flowering and fruiting stage (FS), expansion stage (ES), and maturity stage (MS), with adequate water supply (70%-80% FC) during the growing season as a control. A two-year (2020-2021) field trial was carried out in the Hexi oasis area of China to explore the effect of WD on watermelon evapotranspiration characteristics and crop coefficient under sub-membrane drip irrigation. The results indicated that the daily reference crop evapotranspiration showed a sawtooth fluctuation which was extremely significantly and positively correlated with temperature, sunshine hours, and wind speed. The water consumption during the entire growing season of watermelon varied from 281-323 mm (2020) and 290-334 mm (2021), among which the phasic evapotranspiration valued the maximum during ES, accounting for 37.85% (2020) and 38.94% (2021) in total, followed in the order of VS, SS, MS, and FS. The evapotranspiration intensity of watermelon increased rapidly from SS to VS, reaching the maximum with 5.82 mm·d-1 at ES, after which it gradually decreased. The crop coefficient at SS, VS, FS, ES, and MS varied from 0.400 to 0.477, from 0.550 to 0.771, from 0.824 to 1.168, from 0.910 to 1.247, and from 0.541 to 0.803, respectively. Any period of WD reduced the crop coefficient and evapotranspiration intensity of watermelon at that stage. And then the relationship between LAI and crop coefficient can be characterized better by an exponential regression, thereby establishing a model for estimating the evapotranspiration of watermelon with a Nash efficiency coefficient of 0.9 or more. Hence, the water demand characteristics of oasis watermelon differ significantly during different growth stages, and reasonable irrigation and water control management measures need to be conducted in conjunction with the water requirements features of each growth stage. Also, this work aims to provide a theoretical basis for the irrigation management of watermelon under sub-membrane drip irrigation in desert oases of cold and arid environments.

6.
Theriogenology ; 189: 301-312, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35842953

RESUMEN

Orchitis accounts for a high proportion of male animal reproductive disorders. Hence, it is urgent to identify drugs for the prevention and treatment of orchitis. Antimicrobial peptides (AMPs) are currently recognized as one of the most promising alternatives to antibiotics. However, the protective effects of AMPs on lipopolysaccharide (LPS)-induced orchitis have not been reported. In this study, we developed an LPS-induced orchitis model in which primary bovine Sertoli cells were used as model cells. MPX was indicated to effectively reduce the inflammatory response of Sertoli cells. MPX attenuated the gene expression of the proinflammatory cytokines TNF-α, IL-6 and IL-1ß by suppressing the MAPK pathway, especially the phosphorylation of p38 and ERK. MPX also decreased the oxidative stress response caused by LPS and upregulated Occludin and Claudin-1 expression, thereby maintaining the integrity of the blood-testis barrier. Moreover, we found that MPX inhibited apoptosis in Sertoli cells. In a mouse model, we found that MPX significantly inhibited the disruptive effects of LPS, reducing seminiferous epithelium damage, vacuolations, hyperplasia, and apoptosis in spermatogenic cells and rescuing spermatogenesis. In addition, the expression of inflammatory factors such as IL-1ß, IL-18, IL-6 and TNF-α was decreased after MPX treatment in the mouse testes. MPX had no effect on other organs in mice, indicating its safety. This study was undertaken to investigate how MPX regulates the inflammatory response in Sertoli cells and provide a reference for the clinical prevention and treatment of male animal orchitis.


Asunto(s)
Enfermedades de los Bovinos , Orquitis , Enfermedades de los Roedores , Animales , Péptidos Antimicrobianos , Barrera Hematotesticular/metabolismo , Bovinos , Enfermedades de los Bovinos/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/toxicidad , Masculino , Ratones , Orquitis/tratamiento farmacológico , Orquitis/metabolismo , Orquitis/veterinaria , Enfermedades de los Roedores/metabolismo , Células de Sertoli/metabolismo , Testículo , Factor de Necrosis Tumoral alfa/metabolismo
7.
Sci Rep ; 11(1): 17356, 2021 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-34462495

RESUMEN

Isatis indigotica is a commercial medicinal crop that is widely cultivated with high water and nutrient application, in the arid areas of northwest China. Rational irrigation and nitrogen application are key factors for successful crop management. The objective of this study was to determine the effect of water and nitrogen coupling on the photosynthetic characteristics, yield, and quality of Isatis indigotica produced in northwestern China. Field trials were conducted for 2 consecutive years at an irrigation test station. Data on photosynthetic parameters, yield, and quality were collected from individual Isatis indigotica for each treatment during 2018-2019. The application of nitrogen significantly increased photosynthetic rates and yield under the same irrigation conditions. However, the yields were reduced in the excess water treatments (W3N1 and W3N2) and in the excess nitrogen treatments (W1N3, W2N3, and W3N3) in contrast to the optimum W2N2 treatment. Moreover, the quality indicators of the W2N2 treatment decreased compared with CK, which was due to water stress and more photoassimilates being available to the roots, but the effective quality index value could be effectively improved by greatly increasing the yield.


Asunto(s)
Riego Agrícola , Agricultura/métodos , Isatis/metabolismo , Nitrógeno/química , Fotosíntesis/fisiología , Agua/química , Biomasa , China , Productos Agrícolas , Ecología , Fertilizantes , Geografía , Raíces de Plantas/química , Proyectos de Investigación , Semillas
8.
J Zhejiang Univ Sci B ; 20(1): 39-48, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30614229

RESUMEN

Interferon-γ (IFN-γ) has been used to control cancers in clinical treatment. However, an increasing number of reports have suggested that in some cases effectiveness declines after a long treatment period, the reason being unclear. We have reported previously that long-term IFN-γ treatment induces malignant transformation of healthy lactating bovine mammary epithelial cells (BMECs) in vitro. In this study, we investigated the mechanisms underlying the malignant proliferation of BMECs under IFN-γ treatment. The primary BMECs used in this study were stimulated by IFN-γ (10 ng/mL) for a long term to promote malignancy. We observed that IFN-γ could promote malignant cell proliferation, increase the expression of cyclin D1/cyclin-dependent kinase 4 (CDK4), decrease the expression of p21, and upregulate the expression of cellular-abelsongene (c-Abl) and histone deacetylase 2 (HDAC2). The HDAC2 inhibitor, valproate (VPA) and the c-Abl inhibitor, imatinib, lowered the expression level of cyclin D1/CDK4, and increased the expression level of p21, leading to an inhibitory effect on IFN-γ-induced malignant cell growth. When c-Abl was downregulated, the HDAC2 level was also decreased by promoted proteasome degradation. These data suggest that IFN-γ promotes the growth of malignant BMECs through the c-Abl/HDAC2 signaling pathway. Our findings suggest that long-term application of IFN-γ may be closely associated with the promotion of cell growth and even the carcinogenesis of breast cancer.


Asunto(s)
Histona Desacetilasa 2/metabolismo , Interferón gamma/metabolismo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Proteínas Proto-Oncogénicas c-abl/metabolismo , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/metabolismo , Carcinogénesis/patología , Bovinos , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Transformación Celular Neoplásica/efectos de los fármacos , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Células Cultivadas , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Histona Desacetilasa 2/antagonistas & inhibidores , Histona Desacetilasa 2/genética , Mesilato de Imatinib/farmacología , Interferón gamma/farmacología , Glándulas Mamarias Animales/efectos de los fármacos , Neoplasias Mamarias Experimentales/etiología , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Proteínas Proto-Oncogénicas c-abl/antagonistas & inhibidores , Transducción de Señal , Ácido Valproico/farmacología
9.
Microb Pathog ; 128: 381-389, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30664928

RESUMEN

Actinobacillus pleuropneumoniae (APP) causes porcine pleuropneumonia, a disease responsible for substantial losses in the worldwide pig industry. In this study, outbred Kunming (KM) and Institute of Cancer Research (ICR) mice were evaluated as alternative mice models for APP research. After intranasal infection of serotype 5 reference strain L20, there was less lung damage and a lower clinical sign score in ICR compared to KM mice. However, ICR mice showed more obvious changes in body weight loss, the amount of immune cells (such as neutrophils and lymphocytes) and cytokines (such as IL-6, IL-1ß and TNF-α) in blood and bronchoalveolar lavage fluid (BALF). The immunological changes observed in ICR mice closely mimicked those found in piglets infected with L20. While both ICR and KM mice are susceptible to APP and induce pathological lesions, we suggest that ICR and KM mice are more suitable for immunological and pathogenesis studies, respectively. The research lays the theoretical basis for determine that mice could replace pigs as the APP infection model and it is of significance for the study of APP infection in the laboratory.


Asunto(s)
Infecciones por Actinobacillus , Actinobacillus pleuropneumoniae/patogenicidad , Modelos Animales de Enfermedad , Pleuroneumonía , Infecciones por Actinobacillus/sangre , Infecciones por Actinobacillus/inmunología , Infecciones por Actinobacillus/microbiología , Infecciones por Actinobacillus/patología , Animales , Carga Bacteriana , Peso Corporal , Líquido del Lavado Bronquioalveolar , Citocinas/sangre , Femenino , Pulmón/microbiología , Pulmón/patología , Lesión Pulmonar/microbiología , Lesión Pulmonar/patología , Linfocitos , Ratones , Neutrófilos , Pleuroneumonía/sangre , Pleuroneumonía/inmunología , Pleuroneumonía/microbiología , Pleuroneumonía/patología , Serogrupo , Tasa de Supervivencia , Porcinos , Enfermedades de los Porcinos/microbiología
10.
J Zhejiang Univ Sci B ; 19(10): 796-806, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30269447

RESUMEN

Recent studies have shown that diet can affect the body's immunity. Roughage of dairy cows consists of a variety of plant materials which make different contributions to health. This study investigated the effect of different roughages on the immunity of dairy cows. Serum, peripheral blood mononuclear cells (PBMCs), and milk samples were collected from 20 multiparous mid-lactation cows fed mixed forage (MF)- or corn straw (CS)-based diets. Expression profile analysis was used to detect the differentially expressed genes (DEGs) from PBMCs. The results showed that milk protein in the MF group increased to 3.22 g/100 ml, while that of the CS group milk was 2.96 g/100 ml; by RNA sequencing, it was found that 1615 genes were differentially expressed between the CS group and the MF group among the 24 027 analyzed probes. Gene ontology (GO) and pathway analysis of DEGs suggested that these genes (especially genes coding cytokines, chemokine and its receptors) are involved in the immune response. Results were confirmed at the protein level via detecting the levels of interleukin-2 (IL-2), IL-6, IL-10, IL-12, leptin (LEP), interferon-γ (IFN-γ), transforming growth factor-ß1 (TGF-ß1), and tumor necrosis factor-α (TNF-α) in peripheral blood by enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay analysis. Our data supported the conclusions that the protein content in milk of the MF group was higher than that of the CS group, the CS-based diets induced more release of cytokines than the MF-based diets in dairy cows' PBMCs, and milk protein content may be affected by cytokines.


Asunto(s)
Bovinos/inmunología , Citocinas/fisiología , Leucocitos Mononucleares/inmunología , Zea mays , Animales , Dieta , Femenino , Ontología de Genes , Leche/química , Factor de Crecimiento Transformador beta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA