Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Ther Methods Clin Dev ; 2: 14056, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26052528

RESUMEN

The f subunit of the eukaryotic initiation factor 3 (eIF3f) is downregulated in several cancers and in particular in melanoma and pancreatic cancer cells. Its enforced expression by transient gene transfection negatively regulates cancer cell growth by activating apoptosis. With the aim to increase the intracellular level of eIF3f proteins and activate apoptosis in cancer cell lines, we developed a protein transfer system composed of a cell-penetrating peptide sequence fused to eIF3f protein sequence (MD11-eIF3f). To determine whether exogenously administered eIF3f proteins were able to compensate the loss of endogenous eIF3f and induce cancer cell death, we analyzed the therapeutic action of MD11-eIF3f in several tumor cells. We identified four cell lines respondent to eIF3f-treatment and we evaluated the antitumor properties of the recombinant proteins using dose- and time-dependent studies. Our results demonstrate that this protein delivery approach represents an innovative and powerful strategy for cancer treatment.

2.
Int J Biochem Cell Biol ; 45(10): 2158-62, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23769948

RESUMEN

The eukaryotic initiation factor 3 subunit f (eIF3f) is one of the 13 subunits of the translation initiation factor complex eIF3 required for several steps in the initiation of mRNA translation. In skeletal muscle, recent studies have demonstrated that eIF3f plays a central role in skeletal muscle size maintenance. Accordingly, eIF3f overexpression results in hypertrophy through modulation of protein synthesis via the mTORC1 pathway. Importantly, eIF3f was described as a target of the E3 ubiquitin ligase MAFbx/atrogin-1 for proteasome-mediated breakdown under atrophic conditions. The biological importance of the MAFbx/atrogin-1-dependent targeting of eFI3f is highlighted by the finding that expression of an eIF3f mutant insensitive to MAFbx/atrogin-1 polyubiquitination is associated with enhanced protection against starvation-induced muscle atrophy. A better understanding of the precise role of this subunit should lead to the development of new therapeutic approaches to prevent or limit muscle wasting that prevails in numerous physiological and pathological states such as immobilization, aging, denervated conditions, neuromuscular diseases, AIDS, cancer, diabetes. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Animales , Proliferación Celular , Factor 3 de Iniciación Eucariótica/genética , Humanos , Proteínas Musculares/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/patología , Biosíntesis de Proteínas , Transducción de Señal
3.
Cell Mol Life Sci ; 70(19): 3603-16, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23354061

RESUMEN

The regulation of the protein synthesis has a crucial role in governing the eukaryotic cell growth. Subtle changes of proteins involved in the translation process may alter the rate of the protein synthesis and modify the cell fate by shifting the balance from normal status into a tumoral or apoptotic one. The largest eukaryotic initiation factor involved in translation regulation is eIF3. Amongst the 13 factors constituting eIF3, the f subunit finely regulates this balance in a cell-type-specific manner. Loss of this factor causes malignancy in several cells, and atrophy in normal muscle cells. The intracellular interacting partners which influence its physiological significance in both cancer and muscle cells are detailed in this review. By delineating the global interaction network of this factor and by clarifying its intracellular role, it becomes apparent that the f subunit represents a promising candidate molecule to use for biotherapeutic applications.


Asunto(s)
Factor 3 de Iniciación Eucariótica/genética , Factor 3 de Iniciación Eucariótica/metabolismo , Humanos , Células Musculares/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Biosíntesis de Proteínas , Subunidades de Proteína
4.
FEBS Lett ; 586(4): 362-7, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22249105

RESUMEN

In skeletal muscle atrophy, upregulation and nuclear accumulation of the Ubiquitin E3 ligase MAFbx is essential for accelerated muscle protein loss, but the nuclear/cytoplasmic shuttling of MAFbx is undefined. Here we found that MAFbx contains two functional nuclear localization signals (NLS). Mutation or deletion of only one NLS induced cytoplasmic localization of MAFbx. We identified a non-classical NES located in the leucine charged domain (LCD) of MAFbx, which is leptomycin B insensitive. We demonstrated that mutation (L169Q) in LLXXL motif of LCD suppressed cytoplasmic retention of MAFbx. Nucleocytoplasmic shuttling of MAFbx represents a novel mechanism for targeting its substrates and its cytosolic partners in muscle atrophy.


Asunto(s)
Proteínas Musculares/química , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/genética , Transporte Activo de Núcleo Celular/fisiología , Secuencia de Aminoácidos , Animales , Línea Celular , Secuencia Conservada , Ácidos Grasos Insaturados/farmacología , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas Musculares/genética , Atrofia Muscular/genética , Atrofia Muscular/metabolismo , Mutagénesis Sitio-Dirigida , Señales de Localización Nuclear/química , Señales de Localización Nuclear/genética , Señales de Localización Nuclear/metabolismo , Estructura Terciaria de Proteína , Proteínas Ligasas SKP Cullina F-box/genética , Eliminación de Secuencia , Homología de Secuencia de Aminoácido
5.
PLoS One ; 5(2): e8994, 2010 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-20126553

RESUMEN

The mTORC1 pathway is required for both the terminal muscle differentiation and hypertrophy by controlling the mammalian translational machinery via phosphorylation of S6K1 and 4E-BP1. mTOR and S6K1 are connected by interacting with the eIF3 initiation complex. The regulatory subunit eIF3f plays a major role in muscle hypertrophy and is a key target that accounts for MAFbx function during atrophy. Here we present evidence that in MAFbx-induced atrophy the degradation of eIF3f suppresses S6K1 activation by mTOR, whereas an eIF3f mutant insensitive to MAFbx polyubiquitination maintained persistent phosphorylation of S6K1 and rpS6. During terminal muscle differentiation a conserved TOS motif in eIF3f connects mTOR/raptor complex, which phosphorylates S6K1 and regulates downstream effectors of mTOR and Cap-dependent translation initiation. Thus eIF3f plays a major role for proper activity of mTORC1 to regulate skeletal muscle size.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Mioblastos Esqueléticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas S6 Ribosómicas 90-kDa/metabolismo , Transducción de Señal , Animales , Sitios de Unión/genética , Western Blotting , Diferenciación Celular , Aumento de la Célula , Células Cultivadas , Factor 3 de Iniciación Eucariótica/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Lisina/genética , Lisina/metabolismo , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutación , Mioblastos Esqueléticos/citología , Unión Proteica , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Proteínas , Interferencia de ARN , Proteínas Quinasas S6 Ribosómicas 90-kDa/genética , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Serina-Treonina Quinasas TOR , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transfección
6.
PLoS One ; 4(3): e4973, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19319192

RESUMEN

Ubiquitin ligase Atrogin1/Muscle Atrophy F-box (MAFbx) up-regulation is required for skeletal muscle atrophy but substrates and function during the atrophic process are poorly known. The transcription factor MyoD controls myogenic stem cell function and differentiation, and seems necessary to maintain the differentiated phenotype of adult fast skeletal muscle fibres. We previously showed that MAFbx mediates MyoD proteolysis in vitro. Here we present evidence that MAFbx targets MyoD for degradation in several models of skeletal muscle atrophy. In cultured myotubes undergoing atrophy, MAFbx expression increases, leading to a cytoplasmic-nuclear shuttling of MAFbx and a selective suppression of MyoD. Conversely, transfection of myotubes with sh-RNA-mediated MAFbx gene silencing (shRNAi) inhibited MyoD proteolysis linked to atrophy. Furthermore, overexpression of a mutant MyoDK133R lacking MAFbx-mediated ubiquitination prevents atrophy of mouse primary myotubes and skeletal muscle fibres in vivo. Regarding the complex role of MyoD in adult skeletal muscle plasticity and homeostasis, its rapid suppression by MAFbx seems to be a major event leading to skeletal muscle wasting. Our results point out MyoD as the second MAFbx skeletal muscle target by which powerful therapies could be developed.


Asunto(s)
Proteínas Musculares/metabolismo , Proteína MioD/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Animales , Células Cultivadas , Técnicas de Inactivación de Genes , Ratones , Fibras Musculares Esqueléticas/citología , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/genética , Atrofia Muscular/prevención & control , Mutación , Proteínas Ligasas SKP Cullina F-box/antagonistas & inhibidores , Proteínas Ligasas SKP Cullina F-box/genética
7.
J Biol Chem ; 284(7): 4413-21, 2009 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-19073596

RESUMEN

We recently presented evidence that the subunit eIF3-f of the eukaryotic initiation translation factor eIF3 that interacts with the E3-ligase Atrogin-1/muscle atrophy F-box (MAFbx) for polyubiquitination and proteasome-mediated degradation is a key target that accounts for MAFbx function during muscle atrophy. To understand this process, deletion analysis was used to identify the region of eIF3-f that is required for its proteolysis. Here, we report that the highly conserved C-terminal domain of eIF3-f is implicated for MAFbx-directed polyubiquitination and proteasomal degradation. Site-directed mutagenesis of eIF3-f revealed that the six lysine residues within this domain are required for full polyubiquitination and degradation by the proteasome. In addition, mutation of these six lysines (mutant K(5-10)R) displayed hypertrophic activity in cellulo and in vivo and was able to protect against starvation-induced muscle atrophy. Taken together, our data demonstrate that the C-terminal modifications, believed to be critical for proper eIF3-f regulation, are essential and contribute to a fine-tuning mechanism that plays an important role for eIF3-f function in skeletal muscle.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Lisina/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Animales , Línea Celular , Factor 3 de Iniciación Eucariótica/genética , Lisina/genética , Ratones , Proteínas Musculares/genética , Músculo Esquelético/patología , Atrofia Muscular/genética , Atrofia Muscular/patología , Mutagénesis Sitio-Dirigida , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Estructura Terciaria de Proteína/genética , Proteínas Ligasas SKP Cullina F-box/genética , Inanición/genética , Inanición/metabolismo , Inanición/patología , Ubiquitinación/genética
8.
Cell Cycle ; 7(12): 1698-701, 2008 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-18583931

RESUMEN

The control of muscle cell size is a physiological process balanced by a fine tuning between protein synthesis and protein degradation. MAFbx/Atrogin-1 is a muscle specific E3 ubiquitin ligase upregulated during disuse, immobilization and fasting or systemic diseases such as diabetes, cancer, AIDS and renal failure. This response is necessary to induce a rapid and functional atrophy. To date, the targets of MAFbx/Atrogin-1 in skeletal muscle remain to be identified. We have recently presented evidence that eIF3-f, a regulatory subunit of the eukaryotic translation factor eIF3 is a key target that accounts for MAFbx/Atrogin-1 function in muscle atrophy. More importantly, we showed that eIF3-f acts as a "translational enhancer" that increases the efficiency of the structural muscle proteins synthesis leading to both in vitro and in vivo muscle hypertrophy. We propose that eIF3-f subunit, a mTOR/S6K1 scaffolding protein in the IGF-1/Akt/mTOR dependent control of protein translation, is a positive actor essential to the translation of specific mRNAs probably implicated in muscle hypertrophy. The central role of eIF3-f in both the atrophic and hypertrophic pathways will be discussed in the light of its promising potential in muscle wasting therapy.


Asunto(s)
Factor 3 de Iniciación Eucariótica/química , Factor 3 de Iniciación Eucariótica/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Biosíntesis de Proteínas , Animales , Factor 3 de Iniciación Eucariótica/antagonistas & inhibidores , Humanos , Hipertrofia , Proteínas Musculares/química , Proteínas Musculares/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Atrofia Muscular/etiología , Atrofia Muscular/genética , Proteínas Quinasas/metabolismo , Subunidades de Proteína/fisiología , Proteínas Quinasas S6 Ribosómicas/metabolismo , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR , Síndrome Debilitante/terapia
9.
EMBO J ; 27(8): 1266-76, 2008 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-18354498

RESUMEN

In response to cancer, AIDS, sepsis and other systemic diseases inducing muscle atrophy, the E3 ubiquitin ligase Atrogin1/MAFbx (MAFbx) is dramatically upregulated and this response is necessary for rapid atrophy. However, the precise function of MAFbx in muscle wasting has been questioned. Here, we present evidence that during muscle atrophy MAFbx targets the eukaryotic initiation factor 3 subunit 5 (eIF3-f) for ubiquitination and degradation by the proteasome. Ectopic expression of MAFbx in myotubes induces atrophy and degradation of eIF3-f. Conversely, blockade of MAFbx expression by small hairpin RNA interference prevents eIF3-f degradation in myotubes undergoing atrophy. Furthermore, genetic activation of eIF3-f is sufficient to cause hypertrophy and to block atrophy in myotubes, whereas genetic blockade of eIF3-f expression induces atrophy in myotubes. Finally, eIF3-f induces increasing expression of muscle structural proteins and hypertrophy in both myotubes and mouse skeletal muscle. We conclude that eIF3-f is a key target that accounts for MAFbx function during muscle atrophy and has a major role in skeletal muscle hypertrophy. Thus, eIF3-f seems to be an attractive therapeutic target.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Proteínas Musculares/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Proteínas Ligasas SKP Cullina F-box/fisiología , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Humanos , Hipertrofia/enzimología , Hipertrofia/metabolismo , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/enzimología , Atrofia Muscular/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/fisiología , Mapeo de Interacción de Proteínas , Ubiquitinación
10.
Exp Cell Res ; 312(20): 3999-4010, 2006 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-17014844

RESUMEN

The transcription factors MyoD and Myf5 present distinct patterns of expression during cell cycle progression and development. In contrast to the mitosis-specific disappearance of Myf5, which requires a D-box-like motif overlapping the basic domain, here we describe a stable and inactive mitotic form of MyoD phosphorylated on its serine 5 and serine 200 residues by cyclin B-cdc2. In mitosis, these modifications are required for releasing MyoD from condensed chromosomes and inhibiting its DNA-binding and transcriptional activation ability. Then, nuclear MyoD regains instability in the beginning of G1 phase due to rapid dephosphorylation events. Moreover, a non-phosphorylable MyoD S5A/S200A is not excluded from condensed chromatin and alters mitotic progression with apparent abnormalities. Thus, the drop of MyoD below a threshold level and its displacement from the mitotic chromatin could present another window in the cell cycle for resetting the myogenic transcriptional program and to maintain the myogenic determination of the proliferating cells.


Asunto(s)
División Celular , Fase G2 , Mitosis , Células Musculares/metabolismo , Proteína MioD/metabolismo , Animales , Proteína Quinasa CDC2/metabolismo , Línea Celular , Cromosomas/genética , Cromosomas/metabolismo , Ciclina B/metabolismo , Ratones , Proteína MioD/fisiología , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Serina/química , Transfección , Ubiquitina/metabolismo
11.
J Biol Chem ; 280(4): 2847-56, 2005 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-15531760

RESUMEN

MyoD controls myoblast identity and differentiation and is required for myogenic stem cell function in adult skeletal muscle. MyoD is degraded by the ubiquitin-proteasome pathway mediated by different E3 ubiquitin ligases not identified as yet. Here we report that MyoD interacts with Atrogin-1/MAFbx (MAFbx), a striated muscle-specific E3 ubiquitin ligase dramatically up-regulated in atrophying muscle. A core LXXLL motif sequence in MyoD is necessary for binding to MAFbx. MAFbx associates with MyoD through an inverted LXXLL motif located in a series of helical leucine-charged residue-rich domains. Mutation in the LXXLL core motif represses ubiquitination and degradation of MyoD induced by MAFbx. Overexpression of MAFbx suppresses MyoD-induced differentiation and inhibits myotube formation. Finally the purified recombinant SCF(MAFbx) complex (SCF, Skp1, Cdc53/Cullin 1, F-box protein) mediated MyoD ubiquitination in vitro in a lysine-dependent pathway. Mutation of the lysine 133 in MyoD prevented its ubiquitination by the recombinant SCF(MAFbx) complex. These observations thus demonstrated that MAFbx functions in ubiquitinating MyoD via a sequence found in transcriptional coactivators. These transcriptional coactivators mediate the binding to liganded nuclear receptors. We also identified a novel protein-protein interaction module not yet identified in F-box proteins. MAFbx may play an important role in the course of muscle differentiation by determining the abundance of MyoD.


Asunto(s)
Proteína MioD/química , Proteínas Ligasas SKP Cullina F-box/fisiología , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Línea Celular , ADN/metabolismo , Humanos , Immunoblotting , Inmunoprecipitación , Lisina/química , Ratones , Microscopía Fluorescente , Modelos Genéticos , Datos de Secuencia Molecular , Músculo Esquelético/metabolismo , Proteína MioD/metabolismo , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteínas Ligasas SKP Cullina F-box/metabolismo , Homología de Secuencia de Aminoácido , Factor de Células Madre/metabolismo , Factores de Tiempo , Transcripción Genética , Transfección , Técnicas del Sistema de Dos Híbridos , Ubiquitina/metabolismo
12.
Mol Cell Biol ; 24(4): 1809-21, 2004 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-14749395

RESUMEN

The transcription factors MyoD and Myf-5 control myoblast identity and differentiation. MyoD and Myf-5 manifest opposite cell cycle-specific expression patterns. Here, we provide evidence that MyoD plays a pivotal role at the G(2)/M transition by controlling the expression of p21(Waf1/Cip1) (p21), which is believed to regulate cyclin B-Cdc2 kinase activity in G(2). In growing myoblasts, MyoD reaccumulates during G(2) concomitantly with p21 before entry into mitosis; MyoD is phosphorylated on Ser5 and Ser200 by cyclin B-Cdc2, resulting in a decrease of its stability and down-regulation of both MyoD and p21. Inducible expression of a nonphosphorylable MyoD A5/A200 enhances the MyoD interaction with the coactivator P/CAF, thereby stimulating the transcriptional activation of a luciferase reporter gene placed under the control of the p21 promoter. MyoD A5/A200 causes sustained p21 expression, which inhibits cyclin B-Cdc2 kinase activity in G(2) and delays M-phase entry. This G(2) arrest is not observed in p21(-/-) cells. These results show that in cycling cells MyoD functions as a transcriptional activator of p21 and that MyoD phosphorylation is required for G(2)/M transition.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Mitosis , Mutación/genética , Proteína MioD/genética , Proteína MioD/metabolismo , Animales , Línea Celular , Ciclina B/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Ciclinas/metabolismo , Fase G2 , Regulación de la Expresión Génica , Histona Desacetilasa 1 , Histona Desacetilasas , Ratones , Modelos Biológicos , Músculo Esquelético , Proteína MioD/química , Mioblastos/citología , Mioblastos/enzimología , Mioblastos/metabolismo , Fosforilación , Fosfoserina/metabolismo , Unión Proteica , Factores de Tiempo , Activación Transcripcional
13.
EMBO J ; 21(15): 4070-80, 2002 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-12145207

RESUMEN

Syncytia arising from the fusion of cells expressing the HIV-1-encoded Env gene with cells expressing the CD4/CXCR4 complex undergo apoptosis following the nuclear translocation of mammalian target of rapamycin (mTOR), mTOR-mediated phosphorylation of p53 on Ser15 (p53(S15)), p53-dependent upregulation of Bax and activation of the mitochondrial death pathway. p53(S15) phosphorylation is only detected in syncytia in which nuclear fusion (karyogamy) has occurred. Karyogamy is secondary to a transient upregulation of cyclin B and a mitotic prophase-like dismantling of the nuclear envelope. Inhibition of cyclin-dependent kinase-1 (Cdk1) prevents karyogamy, mTOR activation, p53(S15) phosphorylation and apoptosis. Neutralization of p53 fails to prevent karyogamy, yet suppresses apoptosis. Peripheral blood mononuclear cells from HIV-1-infected patients exhibit an increase in cyclin B and mTOR expression, correlating with p53(S15) phosphorylation and viral load. Cdk1 inhibition prevents the death of syncytia elicited by HIV-1 infection of primary CD4 lymphoblasts. Thus, HIV-1 elicits a pro-apoptotic signal transduction pathway relying on the sequential action of cyclin B-Cdk1, mTOR and p53.


Asunto(s)
Apoptosis/fisiología , Antígenos CD4/fisiología , Proteína Quinasa CDC2/fisiología , Núcleo Celular/fisiología , Productos del Gen env/fisiología , VIH-1/fisiología , Proteínas Quinasas/fisiología , Proteínas Proto-Oncogénicas c-bcl-2 , Transducción de Señal/fisiología , Proteína p53 Supresora de Tumor/fisiología , Adulto , Terapia Antirretroviral Altamente Activa , Antígenos CD4/genética , Linfocitos T CD4-Positivos/enzimología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD4-Positivos/virología , Proteína Quinasa CDC2/antagonistas & inhibidores , Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/genética , Núcleo Celular/ultraestructura , Perfilación de la Expresión Génica , Células Gigantes/citología , Infecciones por VIH/sangre , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Células HeLa/citología , Humanos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/virología , Sustancias Macromoleculares , Fusión de Membrana , Mitocondrias/fisiología , Proteínas de Neoplasias/fisiología , Membrana Nuclear/fisiología , Membrana Nuclear/ultraestructura , Fosforilación , Fosfoserina/química , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas/metabolismo , Receptores CXCR4/genética , Receptores CXCR4/fisiología , Proteínas Recombinantes de Fusión/fisiología , Serina-Treonina Quinasas TOR , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Carga Viral , Proteína X Asociada a bcl-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...