Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38794634

RESUMEN

High-molecular-weight anionic polyacrylamide was used to analyze the effect of kaolin on the structure of particle aggregates formed in freshwater and seawater. Batch flocculation experiments were performed to determine the size of the flocculated aggregates over time by using focused beam reflectance measurements. Sedimentation tests were performed to analyze the settling rate of the solid-liquid interface and the turbidity of the supernatant. Subsequently, a model that relates the hindered settling rate to the aggregate size was used to determine the mass fractal dimension (Df). Flocculation kinetics revealed that greater amounts of kaolin generated larger aggregates because of its lamellar morphology. The maximum size was between 10 and 20 s of flocculation under all conditions. However, the presence of kaolin reduced the settling rate. The fractal dimension decreased with the increase in the kaolin content, resulting in the formation of irregular and porous aggregates. By contrast, factors such as the flocculation time, water quality, and quartz size had limited influences on the fractal dimension. Seawater produced a clearer supernatant because of its higher ionic strength and precoagulation of particles. Notably, the harmful effect of clays in seawater was reduced.

2.
Materials (Basel) ; 15(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36233879

RESUMEN

In the present work an intense bibliographic search is developed, with updated information on the microscopic fundamentals that govern the behavior of flotation operations of chalcopyrite, the main copper mineral in nature. In particular, the effect caused by the presence of pyrite, a non-valuable mineral, but challenging for the operation due to its ability to capture a portion of collector and float, decreasing the quality of the concentrate, is addressed. This manuscript discusses the main chemical and physical mechanisms involved in the phenomena of reagent adsorption on the mineral surface, the impact of pH and type of alkalizing agent, and the effect of pyrite depressants, some already used in the industry and others under investigation. Modern collector reagents are also described, for which, although not yet implemented on an industrial scale, promising results have been obtained in the laboratory, including better copper recovery and selectivity, and even some green reagents present biodegradable properties that generate a better environmental perspective for mineral processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA