Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
3.
Semin Liver Dis ; 43(4): 472-484, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37944999

RESUMEN

Biliary tract cancer is a devastating malignancy of the bile ducts and gallbladder with a dismal prognosis. The study of precancerous lesions has received considerable attention and led to a histopathological classification which, in some respects, remains an evolving field. Consequently, increasing efforts have been devoted to characterizing the molecular pathogenesis of the precursor lesions, with the aim of better understanding the mechanisms of tumor progression, and with the ultimate goal of meeting the challenges of early diagnosis and treatment. This review delves into the molecular mechanisms that initiate and promote the development of precursor lesions of intra- and extrahepatic cholangiocarcinoma and of gallbladder carcinoma. It addresses the genomic, epigenomic, and transcriptomic landscape of these precursors and provides an overview of animal and organoid models used to study them. In conclusion, this review summarizes the known molecular features of precancerous lesions in biliary tract cancer and highlights our fragmentary knowledge of the molecular pathogenesis of tumor initiation.


Asunto(s)
Neoplasias de los Conductos Biliares , Neoplasias del Sistema Biliar , Colangiocarcinoma , Lesiones Precancerosas , Humanos , Neoplasias de los Conductos Biliares/genética , Neoplasias de los Conductos Biliares/patología , Neoplasias del Sistema Biliar/genética , Neoplasias del Sistema Biliar/diagnóstico , Neoplasias del Sistema Biliar/patología , Colangiocarcinoma/diagnóstico , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Conductos Biliares Intrahepáticos/patología , Biología Molecular
4.
Development ; 150(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37497580

RESUMEN

Earlier data on liver development demonstrated that morphogenesis of the bile duct, portal mesenchyme and hepatic artery is interdependent, yet how this interdependency is orchestrated remains unknown. Here, using 2D and 3D imaging, we first describe how portal mesenchymal cells become organised to form hepatic arteries. Next, we examined intercellular signalling active during portal area development and found that axon guidance genes are dynamically expressed in developing bile ducts and portal mesenchyme. Using tissue-specific gene inactivation in mice, we show that the repulsive guidance molecule BMP co-receptor A (RGMA)/neogenin (NEO1) receptor/ligand pair is dispensable for portal area development, but that deficient roundabout 2 (ROBO2)/SLIT2 signalling in the portal mesenchyme causes reduced maturation of the vascular smooth muscle cells that form the tunica media of the hepatic artery. This arterial anomaly does not impact liver function in homeostatic conditions, but is associated with significant tissular damage following partial hepatectomy. In conclusion, our work identifies new players in development of the liver vasculature in health and liver regeneration.


Asunto(s)
Orientación del Axón , Arteria Hepática , Animales , Ratones , Conductos Biliares , Morfogénesis , Silenciador del Gen
6.
PLoS Comput Biol ; 18(2): e1009653, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35180209

RESUMEN

Biliary ducts collect bile from liver lobules, the smallest functional and anatomical units of liver, and carry it to the gallbladder. Disruptions in this process caused by defective embryonic development, or through ductal reaction in liver disease have a major impact on life quality and survival of patients. A deep understanding of the processes underlying bile duct lumen formation is crucial to identify intervention points to avoid or treat the appearance of defective bile ducts. Several hypotheses have been proposed to characterize the biophysical mechanisms driving initial bile duct lumen formation during embryogenesis. Here, guided by the quantification of morphological features and expression of genes in bile ducts from embryonic mouse liver, we sharpened these hypotheses and collected data to develop a high resolution individual cell-based computational model that enables to test alternative hypotheses in silico. This model permits realistic simulations of tissue and cell mechanics at sub-cellular scale. Our simulations suggest that successful bile duct lumen formation requires a simultaneous contribution of directed cell division of cholangiocytes, local osmotic effects generated by salt excretion in the lumen, and temporally-controlled differentiation of hepatoblasts to cholangiocytes, with apical constriction of cholangiocytes only moderately affecting luminal size.


Asunto(s)
Conductos Biliares/metabolismo , Modelos Biológicos , Animales , Células Epiteliales/metabolismo , Ratones , Morfogénesis
7.
Sci Signal ; 14(688)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158399

RESUMEN

In the adult liver, a population of facultative progenitor cells called biliary epithelial cells (BECs) proliferate and differentiate into cholangiocytes and hepatocytes after injury, thereby restoring liver function. In mammalian models of chronic liver injury, Notch signaling is essential for bile duct formation from these cells. However, the continual proliferation of BECs and differentiation of hepatocytes in these models have limited their use for determining whether Notch signaling is required for BECs to replenish hepatocytes after injury in the mammalian liver. Here, we used a temporally restricted model of hepatic repair in which large-scale hepatocyte injury and regeneration are initiated through the acute loss of Mdm2 in hepatocytes, resulting in the rapid, coordinated proliferation of BECs. We found that transient, early activation of Notch1- and Notch3-mediated signaling and entrance into the cell cycle preceded the phenotypic expansion of BECs into hepatocytes. Notch inhibition reduced BEC proliferation, which resulted in failure of BECs to differentiate into hepatocytes, indicating that Notch-dependent expansion of BECs is essential for hepatocyte regeneration. Notch signaling increased the abundance of the insulin-like growth factor 1 receptor (IGF1R) in BECs, and activating IGFR signaling increased BEC numbers but suppressed BEC differentiation into hepatocytes. These results suggest that different signaling mechanisms control BEC expansion and hepatocyte differentiation.


Asunto(s)
Factor I del Crecimiento Similar a la Insulina , Regeneración Hepática , Animales , Ciclo Celular , Diferenciación Celular , Proliferación Celular , Células Epiteliales , Hepatocitos , Factor I del Crecimiento Similar a la Insulina/genética , Hígado
8.
PLoS Comput Biol ; 17(4): e1008854, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33819288

RESUMEN

Colony Stimulating Factor 1 Receptor (CSF1R) is a potential target for anti-epileptic drugs. However, inhibition of CSF1R is not well tolerated by patients, thereby prompting the need for alternative targets. To develop a framework for identification of such alternatives, we here develop a mathematical model of a pro-inflammatory gene regulatory network (GRN) involved in epilepsy and centered around CSF1R. This GRN comprises validated transcriptional and post-transcriptional regulations involving STAT1, STAT3, NFκB, IL6R, CSF3R, IRF8, PU1, C/EBPα, TNFR1, CSF1 and CSF1R. The model was calibrated on mRNA levels of all GRN components in lipopolysaccharide (LPS)-treated mouse microglial BV-2 cells, and allowed to predict that STAT1 and STAT3 have the strongest impact on the expression of the other GRN components. Microglial BV-2 cells were selected because, the modules from which the GRN was deduced are enriched for microglial marker genes. The function of STAT1 and STAT3 in the GRN was experimentally validated in BV-2 cells. Further, in silico analysis of the GRN dynamics predicted that a pro-inflammatory stimulus can induce irreversible bistability whereby the expression level of GRN components occurs as two distinct states. The irreversibility of the switch may enforce the need for chronic inhibition of the CSF1R GRN in order to achieve therapeutic benefit. The cell-to-cell heterogeneity driven by the bistability may cause variable therapeutic response. In conclusion, our modeling approach uncovered a GRN controlling CSF1R that is predominantly regulated by STAT1 and STAT3. Irreversible inflammation-induced bistability and cell-to-cell heterogeneity of the GRN provide a theoretical foundation to the need for chronic GRN control and the limited potential for disease modification via inhibition of CSF1R.


Asunto(s)
Epilepsia/genética , Redes Reguladoras de Genes , Modelos Biológicos , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Transducción de Señal/genética , Animales , Línea Celular , Ratones , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/metabolismo
9.
Hepatology ; 74(3): 1445-1460, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33768568

RESUMEN

BACKGROUND AND AIMS: Earlier diagnosis and treatment of intrahepatic cholangiocarcinoma (iCCA) are necessary to improve therapy, yet limited information is available about initiation and evolution of iCCA precursor lesions. Therefore, there is a need to identify mechanisms driving formation of precancerous lesions and their progression toward invasive tumors using experimental models that faithfully recapitulate human tumorigenesis. APPROACH AND RESULTS: To this end, we generated a mouse model which combines cholangiocyte-specific expression of KrasG12D with 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet-induced inflammation to mimic iCCA development in patients with cholangitis. Histological and transcriptomic analyses of the mouse precursor lesions and iCCA were performed and compared with human analyses. The function of genes overexpressed during tumorigenesis was investigated in human cell lines. We found that mice expressing KrasG12D in cholangiocytes and fed a DDC diet developed cholangitis, ductular proliferations, intraductal papillary neoplasms of bile ducts (IPNBs), and, eventually, iCCAs. The histology of mouse and human IPNBs was similar, and mouse iCCAs displayed histological characteristics of human mucin-producing, large-duct-type iCCA. Signaling pathways activated in human iCCA were also activated in mice. The identification of transition zones between IPNB and iCCA on tissue sections, combined with RNA-sequencing analyses of the lesions supported that iCCAs derive from IPNBs. We further provide evidence that tensin-4 (TNS4), which is stimulated by KRASG12D and SRY-related HMG box transcription factor 17, promotes tumor progression. CONCLUSIONS: We developed a mouse model that faithfully recapitulates human iCCA tumorigenesis and identified a gene cascade which involves TNS4 and promotes tumor progression.


Asunto(s)
Neoplasias de los Conductos Biliares/genética , Carcinoma Ductal/genética , Colangiocarcinoma/genética , Modelos Animales de Enfermedad , Neoplasias Hepáticas Experimentales/genética , Ratones , Tensinas/genética , Animales , Neoplasias de los Conductos Biliares/inducido químicamente , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Carcinoma Ductal/inducido químicamente , Carcinoma Ductal/metabolismo , Carcinoma Ductal/patología , Carcinoma Papilar/inducido químicamente , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patología , Colangiocarcinoma/inducido químicamente , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Colangitis/inducido químicamente , Colangitis/complicaciones , Proteínas HMGB/genética , Proteínas HMGB/metabolismo , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/metabolismo , Neoplasias Hepáticas Experimentales/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Piridinas/toxicidad , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Transducción de Señal , Tensinas/metabolismo
10.
Cancer Res ; 81(10): 2679-2689, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33602788

RESUMEN

Pancreatic acinar cells are a cell type of origin for pancreatic cancer that become progressively less sensitive to tumorigenesis induced by oncogenic Kras mutations after birth. This sensitivity is increased when Kras mutations are combined with pancreatitis. Molecular mechanisms underlying these observations are still largely unknown. To identify these mechanisms, we generated the first CRISPR-edited mouse models that enable detection of wild-type and mutant KRAS proteins in vivo. Analysis of these mouse models revealed that more than 75% of adult acinar cells are devoid of detectable KRAS protein. In the 25% of acinar cells expressing KRAS protein, transcriptomic analysis highlighted a slight upregulation of the RAS and MAPK pathways. However, at the protein level, only marginal pancreatic expression of essential KRAS effectors, including C-RAF, was observed. The expression of KRAS and its effectors gradually decreased after birth. The low sensitivity of adult acinar cells to Kras mutations resulted from low expression of KRAS and its effectors and the subsequent lack of activation of RAS/MAPK pathways. Pancreatitis triggered expression of KRAS and its effectors as well as subsequent activation of downstream signaling; this induction required the activity of EGFR. Finally, expression of C-RAF in adult pancreas was required for pancreatic tumorigenesis. In conclusion, our study reveals that control of the expression of KRAS and its effectors regulates the sensitivity of acinar cells to transformation by oncogenic Kras mutations. SIGNIFICANCE: This study generates new mouse models to study regulation of KRAS during pancreatic tumorigenesis and highlights a novel mechanism through which pancreatitis sensitizes acinar cells to Kras mutations.


Asunto(s)
Células Acinares/patología , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Mutación , Neoplasias Pancreáticas/patología , Pancreatitis/patología , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Células Acinares/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Sistemas CRISPR-Cas , Proliferación Celular , Modelos Animales de Enfermedad , Receptores ErbB/genética , Receptores ErbB/metabolismo , Femenino , Humanos , Masculino , Ratones , Neoplasias Pancreáticas/etiología , Neoplasias Pancreáticas/metabolismo , Pancreatitis/etiología , Pancreatitis/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Gastroenterology ; 160(3): 847-862, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33127392

RESUMEN

BACKGROUND AND AIMS: The Hippo pathway and its downstream effectors YAP and TAZ (YAP/TAZ) are heralded as important regulators of organ growth and regeneration. However, different studies provided contradictory conclusions about their role during regeneration of different organs, ranging from promoting proliferation to inhibiting it. Here we resolve the function of YAP/TAZ during regeneration of the liver, where Hippo's role in growth control has been studied most intensely. METHODS: We evaluated liver regeneration after carbon tetrachloride toxic liver injury in mice with conditional deletion of Yap/Taz in hepatocytes and/or biliary epithelial cells, and measured the behavior of different cell types during regeneration by histology, RNA sequencing, and flow cytometry. RESULTS: We found that YAP/TAZ were activated in hepatocytes in response to carbon tetrachloride toxic injury. However, their targeted deletion in adult hepatocytes did not noticeably impair liver regeneration. In contrast, Yap/Taz deletion in adult bile ducts caused severe defects and delay in liver regeneration. Mechanistically, we showed that Yap/Taz mutant bile ducts degenerated, causing cholestasis, which stalled the recruitment of phagocytic macrophages and the removal of cellular corpses from injury sites. Elevated bile acids activated pregnane X receptor, which was sufficient to recapitulate the phenotype observed in mutant mice. CONCLUSIONS: Our data show that YAP/TAZ are practically dispensable in hepatocytes for liver development and regeneration. Rather, YAP/TAZ play an indirect role in liver regeneration by preserving bile duct integrity and securing immune cell recruitment and function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Colestasis/patología , Regeneración Hepática/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Conductos Biliares/patología , Tetracloruro de Carbono/administración & dosificación , Tetracloruro de Carbono/toxicidad , Proliferación Celular/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/complicaciones , Colestasis/etiología , Modelos Animales de Enfermedad , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Vía de Señalización Hippo , Humanos , Hígado/efectos de los fármacos , Hígado/patología , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Proteínas Señalizadoras YAP
12.
Sci Rep ; 10(1): 5241, 2020 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-32251323

RESUMEN

Earlier diagnosis of pancreatic ductal adenocarcinoma (PDAC) requires better understanding of the mechanisms driving tumorigenesis. In this context, depletion of Epidermal Growth Factor Receptor (EGFR) is known to impair development of PDAC-initiating lesions called acinar-to-ductal metaplasia (ADM) and Pancreatic Intraepithelial Neoplasia (PanIN). In contrast, the role of v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 (ERBB2), the preferred dimerization partner of EGFR, remains poorly understood. Here, using a mouse model with inactivation of Erbb2 in pancreatic acinar cells, we found that Erbb2 is dispensable for inflammation- and KRasG12D-induced development of ADM and PanIN. A mathematical model of EGFR/ERBB2-KRAS signaling, which was calibrated on mouse and human data, supported the observed roles of EGFR and ERBB2. However, this model also predicted that overexpression of ERBB2 stimulates ERBB/KRAS signaling; this prediction was validated experimentally. We conclude that EGFR and ERBB2 differentially impact ERBB signaling during PDAC tumorigenesis, and that the oncogenic potential of ERBB2 is only manifested when it is overexpressed. Therefore, the level of ERBB2, not only its mere presence, needs to be considered when designing therapies targeting ERBB signaling.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Receptores ErbB/genética , Neoplasias Pancreáticas/patología , Receptor ErbB-2/genética , Células Acinares/metabolismo , Células Acinares/patología , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Mutantes , Ratones Transgénicos , Modelos Teóricos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Receptor ErbB-2/metabolismo , Transducción de Señal/genética
13.
Annu Rev Pathol ; 15: 1-22, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31299162

RESUMEN

The involvement of the biliary tract in the pathophysiology of liver diseases and the increased attention paid to bile ducts in the bioconstruction of liver tissue for regenerative therapy have fueled intense research into the fundamental mechanisms of biliary development. Here, I review the molecular, cellular and tissular mechanisms driving differentiation and morphogenesis of the intrahepatic and extrahepatic bile ducts. This review focuses on the dynamics of the transcriptional and signaling modules that promote biliary development in human and mouse liver and discusses studies in which the use of zebrafish uncovered unexplored processes in mammalian biliary development. The review concludes by providing a framework for interpreting the mechanisms that may help us understand the origin of congenital biliary diseases.


Asunto(s)
Conductos Biliares Extrahepáticos/embriología , Conductos Biliares Intrahepáticos/embriología , Sistema Biliar/embriología , Hepatopatías/congénito , Hepatopatías/etiología , Animales , Sistema Biliar/patología , Diferenciación Celular/genética , Embrión de Mamíferos , Embrión no Mamífero , Hepatocitos/fisiología , Humanos , Hepatopatías/genética , Ratones , Morfogénesis/genética , Morfogénesis/fisiología , Transducción de Señal/genética , Pez Cebra/embriología , Pez Cebra/fisiología
14.
Gut ; 69(4): 704-714, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31154393

RESUMEN

OBJECTIVE: Pancreatic cancer can arise from precursor lesions called intraductal papillary mucinous neoplasms (IPMN), which are characterised by cysts containing papillae and mucus-producing cells. The high frequency of KRAS mutations in IPMN and histological analyses suggest that oncogenic KRAS drives IPMN development from pancreatic duct cells. However, induction of Kras mutation in ductal cells is not sufficient to generate IPMN, and formal proof of a ductal origin of IPMN is still missing. Here we explore whether combining oncogenic KrasG12D mutation with an additional gene mutation known to occur in human IPMN can induce IPMN from pancreatic duct cells. DESIGN: We created and phenotyped mouse models in which mutations in Kras and in the tumour suppressor gene liver kinase B1 (Lkb1/Stk11) are conditionally induced in pancreatic ducts using Cre-mediated gene recombination. We also tested the effect of ß-catenin inhibition during formation of the lesions. RESULTS: Activating KrasG12D mutation and Lkb1 inactivation synergised to induce IPMN, mainly of gastric type and with malignant potential. The mouse lesions shared several features with human IPMN. Time course analysis suggested that IPMN developed from intraductal papillae and glandular neoplasms, which both derived from the epithelium lining large pancreatic ducts. ß-catenin was required for the development of glandular neoplasms and subsequent development of the mucinous cells in IPMN. Instead, the lack of ß-catenin did not impede formation of intraductal papillae and their progression to papillary lesions in IPMN. CONCLUSION: Our work demonstrates that IPMN can result from synergy between KrasG12D mutation and inactivation of a tumour suppressor gene. The ductal epithelium can give rise to glandular neoplasms and papillary lesions, which probably both contribute to IPMN formation.


Asunto(s)
Adenocarcinoma Mucinoso/genética , Mutación/genética , Neoplasias Intraductales Pancreáticas/genética , Neoplasias Intraductales Pancreáticas/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Quinasas Activadas por AMP , Adenocarcinoma Mucinoso/patología , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ratones , Factores de Tiempo
15.
Curr Opin Gastroenterol ; 36(2): 90-98, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31850929

RESUMEN

PURPOSE OF REVIEW: Biliary tract cancers which include intrahepatic and extrahepatic cholangiocarcinomas and gallbladder cancer, are characterized by poor outcome. Therefore, identifying the molecular mechanisms of the disease has become a priority. However, such identification has to cope with extreme heterogeneity of the disease, which results from the variable anatomical location, the numerous cell types of origin and the high number of known genetic alterations. RECENT FINDINGS: Animal models can develop invasive and metastatic tumours that recapitulate as faithfully as possible the molecular features of the human tumours. To generate animal models of cholangiocarcinoma, investigators resorted to the administration of carcinogens, induction of cholestasis, grafting of tumour cells and induction of genetic modifications. SUMMARY: Here, we summarize the currently available genetically engineered animal models, and focus on mice and zebrafish. The experimental strategies that were selected to induce cholangiocarcinoma in a time-controlled and cell-type-specific manner are critically examined. We discuss their strengths and limitations while considering their relevance to human pathophysiology.


Asunto(s)
Animales Modificados Genéticamente , Neoplasias del Sistema Biliar , Modelos Animales de Enfermedad , Animales , Neoplasias de los Conductos Biliares/genética , Neoplasias del Sistema Biliar/genética , Colangiocarcinoma/genética , Humanos , Lesiones Precancerosas/genética
16.
J Hepatol ; 71(1): 12-13, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31036351
17.
J Hepatol ; 71(2): 323-332, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30953666

RESUMEN

BACKGROUND & AIMS: Alterations of individual genes variably affect the development of hepatocellular carcinoma (HCC). Thus, we aimed to characterize the function of tumor-promoting genes in the context of gene regulatory networks (GRNs). METHODS: Using data from The Cancer Genome Atlas, from the LIRI-JP (Liver Cancer - RIKEN, JP project), and from our transcriptomic, transfection and mouse transgenic experiments, we identify a GRN which functionally links LIN28B-dependent dedifferentiation with dysfunction of ß-catenin (CTNNB1). We further generated and validated a quantitative mathematical model of the GRN using human cell lines and in vivo expression data. RESULTS: We found that LIN28B and CTNNB1 form a GRN with SMARCA4, Let-7b (MIRLET7B), SOX9, TP53 and MYC. GRN functionality is detected in HCC and gastrointestinal cancers, but not in other cancer types. GRN status negatively correlates with HCC prognosis, and positively correlates with hyperproliferation, dedifferentiation and HGF/MET pathway activation, suggesting that it contributes to a transcriptomic profile typical of the proliferative class of HCC. The mathematical model predicts how the expression of GRN components changes when the expression of another GRN member varies or is inhibited by a pharmacological drug. The dynamics of GRN component expression reveal distinct cell states that can switch reversibly in normal conditions, and irreversibly in HCC. The mathematical model is available via a web-based tool which can evaluate the GRN status of HCC samples and predict the impact of therapeutic agents on the GRN. CONCLUSIONS: We conclude that identification and modelling of the GRN provide insights into the prognosis of HCC and the mechanisms by which tumor-promoting genes impact on HCC development. LAY SUMMARY: Hepatocellular carcinoma (HCC) is a heterogeneous disease driven by the concomitant deregulation of several genes functionally organized as networks. Here, we identified a gene regulatory network involved in a subset of HCCs. This subset is characterized by increased proliferation and poor prognosis. We developed a mathematical model which uncovers the dynamics of the network and allows us to predict the impact of a therapeutic agent, not only on its specific target but on all the genes belonging to the network.


Asunto(s)
Carcinoma Hepatocelular/genética , Redes Reguladoras de Genes/efectos de los fármacos , Neoplasias Hepáticas/genética , Modelos Teóricos , beta Catenina/genética , beta Catenina/metabolismo , Animales , Carcinoma Hepatocelular/patología , Estudios de Cohortes , Células Hep G2 , Humanos , Neoplasias Hepáticas/patología , Ratones , Ratones Transgénicos , Pronóstico , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ARN , Transcriptoma , Transfección
18.
Cells ; 8(4)2019 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-31027317

RESUMEN

Inducible cyclization recombinase (Cre) transgenic mouse strains are powerful tools for cell lineage tracing and tissue-specific knockout experiments. However, low efficiency or leaky expression can be important pitfalls. Here, we compared the efficiency and specificity of two commonly used cholangiocyte-specific Cre drivers, the Opn-iCreERT2 and Ck19-CreERT drivers, using a tdTomato reporter strain. We found that Opn-iCreERT2 triggered recombination of the tdTomato reporter in 99.9% of all cholangiocytes while Ck19-CreERT only had 32% recombination efficiency after tamoxifen injection. In the absence of tamoxifen, recombination was also induced in 2% of cholangiocytes for the Opn-iCreERT2 driver and in 13% for the Ck19-CreERT driver. For both drivers, Cre recombination was highly specific for cholangiocytes since recombination was rare in other liver cell types. Toxic liver injury ectopically activated Opn-iCreERT2 but not Ck19-CreERT expression in hepatocytes. However, ectopic recombination in hepatocytes could be avoided by applying a three-day long wash-out period between tamoxifen treatment and toxin injection. Therefore, the Opn-iCreERT2 driver is best suited for the generation of mutant bile ducts, while the Ck19-CreERT driver has near absolute specificity for bile duct cells and is therefore favorable for lineage tracing experiments.


Asunto(s)
Ingeniería Genética/métodos , Queratina-19/metabolismo , Osteopontina/metabolismo , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Conductos Biliares/metabolismo , Linaje de la Célula/efectos de los fármacos , Femenino , Expresión Génica/genética , Expresión Génica/fisiología , Integrasas/biosíntesis , Integrasas/genética , Integrasas/metabolismo , Queratina-19/genética , Queratina-19/fisiología , Hígado/metabolismo , Masculino , Ratones , Ratones Transgénicos/genética , Osteopontina/genética , Osteopontina/fisiología , Proteínas Recombinantes/metabolismo , Tamoxifeno/farmacología
19.
Gene Expr ; 18(3): 149-155, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-29580319

RESUMEN

The liver and pancreas are closely associated organs that share a common embryological origin. They display amphicrine properties and have similar exocrine organization with parenchymal cells, namely, hepatocytes and acinar cells, secreting bile and pancreatic juice into the duodenum via a converging network of bile ducts and pancreatic ducts. Here we compare and highlight the similarities of molecular mechanisms leading to liver and pancreatic cancer development. We suggest that unraveling tumor development in an organ may provide insight into our understanding of carcinogenesis in the other organ.


Asunto(s)
Carcinogénesis , Carcinoma/etiología , Neoplasias Hepáticas/etiología , Hígado/embriología , Páncreas/embriología , Neoplasias Pancreáticas/etiología , Animales , Linaje de la Célula , Humanos , Hígado/metabolismo , Páncreas/metabolismo
20.
J Hepatol ; 68(5): 1049-1062, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29339113

RESUMEN

Recent development of improved tools and methods to analyse tissues at the three-dimensional level has expanded our capacity to investigate morphogenesis of foetal liver. Here, we review the key morphogenetic steps during liver development, from the prehepatic endoderm stage to the postnatal period, and consider several model organisms while focussing on the mammalian liver. We first discuss how the liver buds out of the endoderm and gives rise to an asymmetric liver. We next outline the mechanisms driving liver and lobe growth, and review morphogenesis of the intra- and extrahepatic bile ducts; morphogenetic responses of the biliary tract to liver injury are discussed. Finally, we describe the mechanisms driving formation of the vasculature, namely venous and arterial vessels, as well as sinusoids.


Asunto(s)
Hígado/embriología , Animales , Conductos Biliares Intrahepáticos/embriología , Sistema Biliar/embriología , Células Madre Embrionarias/citología , Hepatocitos/citología , Humanos , Hígado/irrigación sanguínea , Hígado/crecimiento & desarrollo , Modelos Biológicos , Morfogénesis , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...