Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 188: 116511, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33069951

RESUMEN

Bioretention basins are one of the most commonly used green stormwater features, with the potential to accumulate significant levels of nitrogen (N) in their soil and to permanently remove it through denitrification. Many studies have investigated the N removal potential of bioretention basins through the assessment of inflow and outflow concentrations. However, their long-term N removal through soil accumulation and denitrification potential is less known. This study investigated the temporal variation of total N (TN) accumulation and denitrification potential in soils of 25 bioretention basins within a 13-year soil chronosequence, in a subtropical climate in Australia. The denitrification potential of a subset of seven bioretention basins was investigated in accompaniment with nutrient and soil characteristics. Additionally, stable isotopes (δ13C and δ15N) were used to assess temporal changes in the soil composition as well as to identify the sources of carbon (C) into these basins. Over 13 years of operation, TN accumulated faster in the top 5 cm of soil than deeper soils. Soil TN density was highest in the top 5 cm with an average of 1.4 kg N m-3, which was about two times higher than deeper soils. Site age and soil texture were the best predictors of soil TN density and denitrification (1 to 9.7 mg N m-2 h-1). The isotope values were variable among basins. Low δ15N values in young basins (-1.02‰) suggested fixation as the main source of N, while older basins had higher δ15N, indicating higher denitrification. Bioretention plants were the primary source of soil C; although the occurrence of soil amendment also contributed to the C pool. To improve the performance of these bioretention basins, we recommend increasing vegetation at initial years after construction, and enhancing more frequent anaerobic conditions in the high soil profile. These two conditions can improve denitrification potential, and thus the performance of these basins for improving water quality.


Asunto(s)
Nitrógeno , Suelo , Australia , Carbono , Desnitrificación , Nitrógeno/análisis
2.
Water Sci Technol ; 77(5-6): 1372-1385, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29528325

RESUMEN

Buoyancy-driven turbulent dispersion in a maturation pond is studied using a combination of field measurements and computational fluid dynamics. Modelling flow in maturation ponds requires turbulent closure models because of the large physical size and the need to model on diurnal timescales. Simulation results are shown to be more sensitive to the inclusion of a buoyancy production term appearing in the turbulent transport equations than to the model choice. Comparisons with experimental thermal profiles show that without this term, thermal mixing is over-predicted. When including the term, stratification occurs but thermal mixing is under-predicted in the lower water column. In terms of pond performance, the effect of this term is to cause increased surface die-off of Escherichia coli during sunlight hours due to the generation of stratification. It is recommended that future modelling consider and implement this term.


Asunto(s)
Simulación por Computador , Desinfección/métodos , Escherichia coli/efectos de la radiación , Estanques , Luz Solar , Eliminación de Residuos Líquidos/métodos , Microbiología del Agua , Hidrodinámica , Factores de Tiempo
3.
Water Res ; 108: 151-159, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27871746

RESUMEN

Maturation ponds are a type of waste stabilisation pond (WSP) designed to reduce carbon, nutrients and pathogens in the final stages of a WSP wastewater treatment system. In this study, a one-dimensional plug-flow pond model is proposed to predict temperature and E. coli concentration distributions and overall pond disinfection performance. The model accounts for the effects of vertical mixing and ultraviolet light-dependent die-off rate kinetics. Measurements of radiation, wind-speed, humidity and air temperature are recorded for model inputs and good agreement with measured vertical temperature distributions and outlet E. coli concentrations is found in an operational, subtropical maturation pond. Measurements and the model both show a diurnal pattern of stratification during daylight hours and natural convective mixing at night on days corresponding to low wind speeds, strong heat input from solar radiation and clear night skies. In the evenings, the thermal stratification is shown to collapse due to surface energy loss via longwave radiation which triggers top-down natural convective mixing. The disinfection model is found to be sensitive to the choice of die-off kinetics. The diurnal mixing pattern is found to play a vital role in the disinfection process by ensuring that pathogens are regularly transported to the near-surface layer where ultraviolet light penetration is effective. The model proposed in this paper offers clear advantages to pond designers by including geographical specific, time-varying boundary conditions and accounting for the important physical aspects of vertical mixing and sunlight inactivation processes, yet is computationally straightforward.


Asunto(s)
Estanques , Luz Solar , Desinfección , Escherichia coli , Eliminación de Residuos Líquidos
4.
Water Sci Technol ; 65(6): 1137-41, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22378014

RESUMEN

Monolayers are highly desirable for their evaporation reducing capabilities due to their relatively minimal cost and ease of application. Despite these positive attributes, monolayers have consistently failed to perform effectively due to the harsh wind and wave conditions prevalent across real-world water reserves. An exhaustive and consistent study testing the influence of wind and wave combinations on monolayer performance has yet to be presented in the literature. To remedy this, the effect of simultaneous wind and wave conditions on a benchmark high-performance monolayer (octadecanol suspension, CH(3)(CH(2))(16)CH(2)OH) has been analysed. Subjected only to waves, the monolayer remained intact due to its innate ability to compress and expand. However, the constant simultaneous application of wind and waves caused the monolayer to break up and gather down-wind where it volatilised over time. At wind speeds above 1.3 m s(-1) the monolayer was completely ineffective. For wind speeds below this threshold, the monolayer had an influence on the evaporation rate dependent on wind speed. From these results a series of application protocols can now be developed for the optimised deployment of monolayers in real-world water reserves. This will be of interest to private, commercial and government organisations involved in the storage and management of water resources.


Asunto(s)
Movimientos del Agua , Abastecimiento de Agua , Agua/química , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...