Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 12(6): e0023523, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37162354

RESUMEN

Avian metapneumovirus (aMPV) causes a highly contagious upper respiratory and reproductive disease in chickens, turkeys, and ducks. Here, complete genome sequences of aMPV-B vaccine strains BR/1890/E1/19 (PL21, Nemovac; Boehringer Ingelheim Animal Health, Brazil) and BR/1891/E2/19 (1062; Hipraviar, France) were sequenced and compared with the pathogenic field strain VCO3/60616.

2.
Vaccine ; 41(1): 145-158, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36411134

RESUMEN

In France during winter 2016-2017, 487 outbreaks of clade 2.3.4.4b H5N8 subtype high pathogenicity (HP) avian influenza A virus (AIV) infections were detected in poultry and captive birds. During this epizootic, HPAIV A/decoy duck/France/161105a/2016 (H5N8) was isolated and characterized in an experimental infection transmission model in conventional mule ducks. To investigate options to possibly protect such ducks against this HPAIV, three vaccines were evaluated in controlled conditions. The first experimental vaccine was derived from the hemagglutinin gene of another clade 2.3.4.4b A(H5N8) HPAIV. It was injected at three weeks of age, either alone (Vac1) or after a primer injection at day-old (Vac1 + boost). The second vaccine (Vac2) was a commercial bivalent adjuvanted vaccine containing an expressed hemagglutinin modified from a clade 2.3.2 A(H5N1) HPAIV. Vac2 was administered as a single injection at two weeks of age. The third experimental vaccine (Vac3) also incorporated a homologous 2.3.4.4b H5 HA gene and was administered as a single injection at three weeks of age. Ducks were challenged with HPAIV A/decoy duck/France/161105a/2016 (H5N8) at six weeks of age. Post-challenge virus excretion was monitored in vaccinated and control birds every 2-3 days for two weeks using real-time reverse-transcription polymerase chain reaction and serological analyses (haemagglutination inhibition test against H5N8, H5 ELISA and AIV ELISA) were performed. Vac1 abolished oropharyngeal and cloacal shedding to almost undetectable levels, whereas Vac3 abolished cloacal shedding only (while partially reducing respiratory shedding) and Vac2 only partly reduced the respiratory and intestinal excretion of the challenge virus. These results provided relevant insights in the immunogenicity of recombinant H5 vaccines in mule ducks, a rarely investigated hybrid between Pekin and Muscovy duck species that has played a critical role in the recent H5 HPAI epizootics in France.


Asunto(s)
Patos , Subtipo H5N1 del Virus de la Influenza A , Subtipo H5N8 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Equidae , Hemaglutininas , Enfermedades de las Aves de Corral/prevención & control , Vacunas Sintéticas , Virulencia
3.
Vet Sci ; 9(10)2022 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-36288192

RESUMEN

Avian metapneumoviruses (aMPV subtypes A-D) are respiratory and reproductive pathogens of poultry. Since aMPV-A was initially reported in Mexico in 2014, there have been no additional reports of its detection in the country. Using nontargeted next-generation sequencing (NGS) of FTA card-spotted respiratory samples from commercial chickens in Mexico, seven full genome sequences of aMPV-A (lengths of 13,288-13,381 nucleotides) were de novo assembled. Additionally, complete coding sequences of genes N (n = 2), P and M (n = 7 each), F and L (n = 1 each), M2 (n = 6), SH (n = 5) and G (n = 2) were reference-based assembled from another seven samples. The Mexican isolates phylogenetically group with, but in a distinct clade separate from, other aMPV-A strains. The genome and G-gene nt sequences of the Mexican aMPVs are closest to strain UK/8544/06 (97.22-97.47% and 95.07-95.83%, respectively). Various amino acid variations distinguish the Mexican isolates from each other, and other aMPV-A strains, most of which are in the G (n = 38), F (n = 12), and L (n = 19) proteins. Using our sequence data and publicly available aMPV-A data, we revised a previously published rRT-PCR test, which resulted in different cycling and amplification conditions for aMPV-A to make it more compatible with other commonly used rRT-PCR diagnostic cycling conditions. This is the first comprehensive sequence analysis of aMPVs in Mexico and demonstrates the value of nontargeted NGS to identify pathogens where targeted virus surveillance is likely not routinely performed.

4.
Front Vet Sci ; 9: 931272, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35903135

RESUMEN

New variants of infectious bronchitis viruses (IBVs; Coronaviridae) continuously emerge despite routine vaccinations. Here, we report genome sequence variations of IBVs identified by random non-targeted next generation sequencing (NGS) of vaccine and field samples collected on FTA cards from commercial flocks in Mexico in 2019-2021. Paired-ended sequencing libraries prepared from rRNA-depleted RNAs were sequenced using Illumina MiSeq. IBV RNA was detected in 60.07% (n = 167) of the analyzed samples, from which 33 complete genome sequences were de novo assembled. The genomes are organized as 5'UTR-[Rep1a-Rep1b-S-3a-3b-E-M-4b-4c-5a-5b-N-6b]-3'UTR, except in eight sequences lacking non-structural protein genes (accessory genes) 4b, 4c, and 6b. Seventeen sequences have auxiliary S2' cleavage site located 153 residues downstream the canonically conserved primary furin-specific S1/S2 cleavage site. The sequences distinctly cluster into lineages GI-1 (Mass-type; n = 8), GI-3 (Holte/Iowa-97; n = 2), GI-9 (Arkansas-like; n = 8), GI-13 (793B; n = 14), and GI-17 (California variant; CAV; n = 1), with regional distribution in Mexico; this is the first report of the presence of 793B- and CAV-like strains in the country. Various point mutations, substitutions, insertions and deletions are present in the S1 hypervariable regions (HVRs I-III) across all 5 lineages, including in residues 38, 43, 56, 63, 66, and 69 that are critical in viral attachment to respiratory tract tissues. Nine intra-/inter-lineage recombination events are present in the S proteins of three Mass-type sequences, two each of Holte/Iowa-97 and Ark-like sequence, and one each of 793B-like and CAV-like sequences. This study demonstrates the feasibility of FTA cards as an attractive, adoptable low-cost sampling option for untargeted discovery of avian viral agents in field-collected clinical samples. Collectively, our data points to co-circulation of multiple distinct IBVs in Mexican commercial flocks, underscoring the need for active surveillance and a review of IBV vaccines currently used in Mexico and the larger Latin America region.

5.
Avian Pathol ; 51(2): 181-196, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35099352

RESUMEN

Avian metapneumovirus (aMPV) causes respiratory disease and drops in egg production in chickens, and is routinely controlled by vaccination. However, the host's immune response to virulent challenge in vaccinated or unvaccinated broiler chickens is poorly characterized. We show that subtype B vaccination offers heterologous (subtype A challenge) and homologous (subtype B challenge) protection. Subtype B challenge caused significantly greater humoral antibody titres in vaccinated and unvaccinated chickens. In turbinate and lung tissues of unvaccinated-challenged chickens, IgA and IgY mRNA transcription was significantly up-regulated after subtype B challenge compared to subtype A. Cellular immunity (CD8-α and CD8-ß) gene transcripts were significantly up-regulated during early and later stages of infection from subtype B or subtype A, respectively. Immune gene transcriptional responses (IL-1ß, IL-6 and IL-18) were significantly up-regulated after challenge. Gene transcription results showed that mRNA expression levels of CD8-α, CD8-ß, TLR3 and IL-6, particularly in turbinate and trachea tissues, are useful parameters to include in future aMPV vaccination-challenge studies.


Asunto(s)
Metapneumovirus , Infecciones por Paramyxoviridae , Enfermedades de las Aves de Corral , Animales , Anticuerpos Antivirales , Pollos , Inmunidad Celular , Metapneumovirus/genética , Infecciones por Paramyxoviridae/prevención & control , Infecciones por Paramyxoviridae/veterinaria , Vacunación/veterinaria
6.
Avian Dis ; 66(4): 396-403, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36715470

RESUMEN

The advent of turkey herpesvirus (HVT) vector vaccine technology (vHVT) has made a huge improvement in the prevention and control of several poultry diseases. The objective of this study was to compare, under experimental conditions, the protection conferred by different vaccination programs based on an HVT double-insert (infectious bursal disease {IBD] and Newcastle disease [ND]) vector vaccine (vHVT-IBD-ND) and an HVT single-insert (vHVT-ND) vector vaccine followed by a vaccination with a live ND vaccine at Day 1 only or at Days 1 and 14. Commercial broilers were vaccinated by the recombinant ND virus vaccines subcutaneously at 1 day old, in the hatchery, and challenged at 30 days of age using the Moroccan ND virus velogenic viscerotropic JEL strain. The results showed that the tested vaccine induced 95% to 100% clinical protection against mortality and clinical signs. The humoral immune response to vaccination was detected from 3 wk of age using enzyme-linked immunosorbent assay and hemagglutination inhibition tests. ND challenge virus shedding was significantly reduced in the vaccinated birds as compared to controls. Significant reduction of the cloacal shedding suggests that the vHVT-IBD-ND vaccine stimulates actively the immunity against the tested ND challenge virus. No significant differences were found between the vaccination programs based on vHVT-IBD-ND or on vHVT-ND.


Evaluación de la eficacia de las vacunas recombinantes contra el virus de la enfermedad de Newcastle (vHVT-IBD-ND de doble inserto y vHVT-ND de inserto único) seguidas de una vacunación con una vacuna viva para la enfermedad de Newcastle contra un desafío de la enfermedad de Newcastle velogénico marroquí en pollos de engorde comerciales. El advenimiento de la tecnología de vacunas recombinantes (vHVT) del virus herpes del pavo (HVT) ha provocado una mejora en la prevención y el control de varias enfermedades avícolas. El objetivo de este estudio fue comparar, en condiciones experimentales, la protección conferida por diferentes programas vacunales basados en una vacuna recombinante HVT con doble inserto (bursitis infecciosa [EII] y enfermedad de Newcastle [ND]) (vHVT-IBD-ND) y una vacuna recombinante HVT con inserto única (vHVT-ND) seguida de una vacunación con una vacuna para Newcastle viva aplicada en el día 1 o en los días 1 y 14. Pollos de engorde comerciales se vacunaron con las vacunas recombinantes del virus de la enfermedad de Newcastle por vía subcutánea al día de edad, en la incubadora y se expusieron a los 30 días de edad utilizando la cepa JEL viscerotrópica velogénica del virus de la enfermedad de Newcastle de Marruecos. Los resultados mostraron que la vacuna evaluada indujo una protección clínica del 95% al 100% contra la mortalidad y los signos clínicos. La respuesta inmune humoral a la vacunación se detectó a partir de las 3 semanas de edad mediante ensayo inmunoabsorbente ligado a enzimas y pruebas de inhibición de la hemaglutinación. La excreción del virus de Newcastle de desafío se redujo significativamente en las aves vacunadas en comparación con los controles. La reducción significativa de la eliminación cloacal sugiere que la vacuna vHVT-IBD-ND estimula activamente la inmunidad contra el virus de Newcastle de desafío analizado. No se encontraron diferencias significativas entre los programas de vacunación basados en vHVT-IBD-ND o en vHVT-ND.


Asunto(s)
Enfermedad de Newcastle , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Virus de la Enfermedad de Newcastle , Pollos , Vacunas Sintéticas , Vacunación/veterinaria , Anticuerpos Antivirales
7.
Animals (Basel) ; 13(1)2022 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-36611670

RESUMEN

In recent years, the impact of respiratory disease resulting from Avian Metapneumovirus (aMPV) infection has been generally rising in the broiler industry in Europe. In this context, in order to investigate aMPV contribution to the clinical picture and the potential benefits of diversified vaccination strategies compared to nonvaccination policies, a longitudinal monitoring was performed, also evaluating Infectious Bronchitis Virus (IBV) presence. Broiler flocks located in Western France, where aMPV has already proven to be a health and productivity issue, were screened by RT-PCR on rhino-pharyngeal swabs, and the viruses were genetically characterized by sequence analysis. For a more comprehensive picture of aMPV molecular epidemiology and evolution in France, aMPV subtype B strains detected from 1985 to 1998 were sequenced and included in the analysis. The survey confirmed the detection of aMPV subtype B in commercial broiler flocks in France, together with a certain heterogeneity demonstrated by the circulation of more recent and historical French field strains. No IBV field strains were detected. The implementation and evaluation of different management choices and vaccine strategies suggests once again that immunization does not prevent infection but contributes greatly to the containment of the clinical manifestations.

8.
Vaccine ; 38(31): 4837-4845, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32505441

RESUMEN

In ovo vaccination with herpesvirus of turkey (HVT) or recombinant HVT (rHVT) is commonly used in meat-type chickens. Previous studies showed that in ovo vaccination with HVT enhances innate, cellular, and humoral immune responses in egg-type chicken embryos. This study evaluated if in ovo vaccination with HVT hastens immunocompetence of commercial meat-type chickens and optimized vaccination variables (dose and strain of HVT) to accelerate immunocompetence. A conventional HVT vaccine was given at recommended dose (RD), HVT-RD = 6080 plaque forming units (PFU), double-dose (2x), half-dose (1/2), or quarter-dose (1/4). Two rHVTs were given at RD: rHVT-A = 7380 PFU, rHVT-B = 8993 PFU. Most, if not all, treatments enhanced splenic lymphoproliferation with Concanavalin A and increased the percentage of granulocytes at day of age. Dose had an effect and HVT-RD was ideal. An increase of wing-web thickness after exposure to phytohemagglutinin-L was only detected after vaccination with HVT-RD. Furthermore, compared to sham-inoculated chickens, chickens in the HVT-RD had an increased percentage of CD3+ T cells and CD4+ T-helper cells, and increased expression of major histocompatibility complex (MHC)-II on most cell subsets (CD45+ cells, non-T leukocytes, T cells and the CD8+ and T cell receptor γδ T-cell subsets). Other treatments (HVT-1/2 and rHVT-B) share some of these features but differences were not as remarkable as in the HVT-RD group. Expression of MHC-I was reduced, compared to sham-inoculated chickens, in most of the cell phenotypes evaluated in the HVT-RD, HVT-2x and rHVT-A groups, while no effect was observed in other treatments. The effect of in ovo HVT on humoral immune responses (antibody responses to keyhole limpet hemocyanin and to a live infectious bronchitis/Newcastle disease vaccine) was minimal. Our study demonstrates in ovo vaccination with HVT in meat-type chickens can accelerate innate and adaptive immunity and we could optimize such effect by modifying the vaccine dose.


Asunto(s)
Enfermedad de Marek , Enfermedades de las Aves de Corral , Vacunas Virales , Animales , Embrión de Pollo , Pollos , Herpesvirus Meleágrido 1 , Carne , Enfermedades de las Aves de Corral/prevención & control , Vacunación
9.
Vaccine ; 37(52): 7566-7575, 2019 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-31607602

RESUMEN

This study reports on the simultaneous administration of live NDV or aMPV subtype B vaccines alongside two live IBV (Massachusetts-H120 and 793B-CR88) vaccines in day-old maternal-antibody positive commercial broiler chicks. In the first experiment, chicks were divided into four groups; one unvaccinated and three groups vaccinated with live NDV VG/GA-Avinew, live H120 + CR88, or VG/GA-Avinew + H120 + CR88. In the second experiment, live aMPV subtype B vaccine was used in place of NDV. Clinical signs were monitored daily and oropharyngeal swabs were taken at regular intervals for vaccine virus detection. Blood was collected at 21 dpv for serology. 10 chicks from each group were challenged with virulent strains of M41 or QX or aMPV subtype B. For IBV, after 5 days post challenge (dpc), tracheal ciliary protection was assessed. For aMPV, clinical scores were recorded up to 10 dpc. For NDV, haemagglutination inhibition (HI) antibody titres were assayed as an indicator of protective immunity. In both experiments, ciliary protection for IBV vaccinated groups was maintained above 90%. The protection against virulent aMPV challenge was not compromised when aMPV, H120 and CR88 were co-administered. NDV HI mean titres in single and combined NDV-vaccinated groups remained above the protective titre (>3 log2). Both experiments demonstrated that simultaneous administration of live NDV VG/GA-Avinew or aMPV subtype B alongside H120 and CR88 vaccines does not interfere with protection conferred against NDV, IBV or aMPV.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Enfermedad de Newcastle/prevención & control , Enfermedades de las Aves de Corral/prevención & control , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Pollos/inmunología , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/prevención & control , Pruebas de Inhibición de Hemaglutinación , Virus de la Bronquitis Infecciosa , Metapneumovirus , Enfermedad de Newcastle/inmunología , Virus de la Enfermedad de Newcastle , Organismos Libres de Patógenos Específicos , Vacunas Atenuadas/inmunología , Vacunas Virales/administración & dosificación
10.
Vet Res ; 49(1): 64, 2018 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-30060757

RESUMEN

Vaccines and other alternative products can help minimize the need for antibiotics by preventing and controlling infectious diseases in animal populations, and are central to the future success of animal agriculture. To assess scientific advancements related to alternatives to antibiotics and provide actionable strategies to support their development, the United States Department of Agriculture, with support from the World Organisation for Animal Health, organized the second International Symposium on Alternatives to Antibiotics. It focused on six key areas: vaccines; microbial-derived products; non-nutritive phytochemicals; immune-related products; chemicals, enzymes, and innovative drugs; and regulatory pathways to enable the development and licensure of alternatives to antibiotics. This article, part of a two-part series, synthesizes and expands on the expert panel discussions regarding opportunities, challenges and needs for the development of vaccines that may reduce the need for use of antibiotics in animals; new approaches and potential solutions will be discussed in part 2 of this series. Vaccines are widely used to prevent infections in food animals. Various studies have demonstrated that their animal agricultural use can lead to significant reductions in antibiotic consumption, making them promising alternatives to antibiotics. To be widely used in food producing animals, vaccines have to be safe, effective, easy to use, and cost-effective. Many current vaccines fall short in one or more of these respects. Scientific advancements may allow many of these limitations to be overcome, but progress is funding-dependent. Research will have to be prioritized to ensure scarce public resources are dedicated to areas of potentially greatest impact first, and private investments into vaccine development constantly compete with other investment opportunities. Although vaccines have the potential to improve animal health, safeguard agricultural productivity, and reduce antibiotic consumption and resulting resistance risks, targeted research and development investments and concerted efforts by all affected are needed to realize that potential.


Asunto(s)
Ganado/inmunología , Vacunas/uso terapéutico , Animales , Antibacterianos/uso terapéutico , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA