Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 4205, 2022 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-35864084

RESUMEN

Clouds regulate the Greenland Ice Sheet's surface energy balance through the competing effects of shortwave radiation shading and longwave radiation trapping. However, the relative importance of these effects within Greenland's narrow ablation zone, where nearly all meltwater runoff is produced, remains poorly quantified. Here we use machine learning to merge MODIS, CloudSat, and CALIPSO satellite observations to produce a high-resolution cloud radiative effect product. For the period 2003-2020, we find that a 1% change in cloudiness has little effect (±0.16 W m-2) on summer net radiative fluxes in the ablation zone because the warming and cooling effects of clouds compensate. However, by 2100 (SSP5-8.5 scenario), radiative fluxes in the ablation zone will become more than twice as sensitive (±0.39 W m-2) to changes in cloudiness due to reduced surface albedo. Accurate representation of clouds will therefore become increasingly important for forecasting the Greenland Ice Sheet's contribution to global sea-level rise.

2.
Geophys Res Lett ; 49(20): e2022GL099330, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36589269

RESUMEN

Sub-grid-scale processes occurring at or near the surface of an ice sheet have a potentially large impact on local and integrated net accumulation of snow via redistribution and sublimation. Given observational complexity, they are either ignored or parameterized over large-length scales. Here, we train random forest (RF) models to predict variability in net accumulation over the Antarctic Ice Sheet using atmospheric variables and topographic characteristics as predictors at 1 km resolution. Observations of net snow accumulation from both in situ and airborne radar data provide the input observable targets needed to train the RF models. We find that local net accumulation deviates by as much as 172% of the atmospheric model mean. The correlation in space between the predicted net accumulation variability and satellite-derived surface-height change indicates that surface processes operate differently through time, driven largely by the seasonal anomalies in snow accumulation.

3.
Geophys Res Lett ; 47(15): e2020GL087970, 2020 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-32999516

RESUMEN

Between 1992 and 2017, the Antarctic Ice Sheet (AIS) lost ice equivalent to 7.6 ± 3.9 mm of sea level rise. AIS mass loss is mitigated by ice shelves that provide a buttress by regulating ice flow from tributary glaciers. However, ice-shelf stability is threatened by meltwater ponding, which may initiate, or reactivate preexisting, fractures, currently poorly understood processes. Here, through ground penetrating radar (GPR) analysis over a buried lake in the grounding zone of an East Antarctic ice shelf, we present the first field observations of a lake drainage event in Antarctica via vertical fractures. Concurrent with the lake drainage event, we observe a decrease in surface elevation and an increase in Sentinel-1 backscatter. Finally, we suggest that fractures that are initiated or reactivated by lake drainage events in a grounding zone will propagate with ice flow onto the ice shelf itself, where they may have implications for its stability.

4.
Nat Commun ; 8: 14730, 2017 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-28361871

RESUMEN

Melting of the Greenland ice sheet (GrIS) and its peripheral glaciers and ice caps (GICs) contributes about 43% to contemporary sea level rise. While patterns of GrIS mass loss are well studied, the spatial and temporal evolution of GICs mass loss and the acting processes have remained unclear. Here we use a novel, 1 km surface mass balance product, evaluated against in situ and remote sensing data, to identify 1997 (±5 years) as a tipping point for GICs mass balance. That year marks the onset of a rapid deterioration in the capacity of the GICs firn to refreeze meltwater. Consequently, GICs runoff increases 65% faster than meltwater production, tripling the post-1997 mass loss to 36±16 Gt-1, or ∼14% of the Greenland total. In sharp contrast, the extensive inland firn of the GrIS retains most of its refreezing capacity for now, buffering 22% of the increased meltwater production. This underlines the very different response of the GICs and GrIS to atmospheric warming.

5.
Nat Commun ; 7: 10266, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26756470

RESUMEN

The Greenland ice sheet has become one of the main contributors to global sea level rise, predominantly through increased meltwater runoff. The main drivers of Greenland ice sheet runoff, however, remain poorly understood. Here we show that clouds enhance meltwater runoff by about one-third relative to clear skies, using a unique combination of active satellite observations, climate model data and snow model simulations. This impact results from a cloud radiative effect of 29.5 (±5.2) W m(-2). Contrary to conventional wisdom, however, the Greenland ice sheet responds to this energy through a new pathway by which clouds reduce meltwater refreezing as opposed to increasing surface melt directly, thereby accelerating bare-ice exposure and enhancing meltwater runoff. The high sensitivity of the Greenland ice sheet to both ice-only and liquid-bearing clouds highlights the need for accurate cloud representations in climate models, to better predict future contributions of the Greenland ice sheet to global sea level rise.

6.
Nature ; 502(7469): 89-92, 2013 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-24037377

RESUMEN

Iceberg calving has been assumed to be the dominant cause of mass loss for the Antarctic ice sheet, with previous estimates of the calving flux exceeding 2,000 gigatonnes per year. More recently, the importance of melting by the ocean has been demonstrated close to the grounding line and near the calving front. So far, however, no study has reliably quantified the calving flux and the basal mass balance (the balance between accretion and ablation at the ice-shelf base) for the whole of Antarctica. The distribution of fresh water in the Southern Ocean and its partitioning between the liquid and solid phases is therefore poorly constrained. Here we estimate the mass balance components for all ice shelves in Antarctica, using satellite measurements of calving flux and grounding-line flux, modelled ice-shelf snow accumulation rates and a regional scaling that accounts for unsurveyed areas. We obtain a total calving flux of 1,321 ± 144 gigatonnes per year and a total basal mass balance of -1,454 ± 174 gigatonnes per year. This means that about half of the ice-sheet surface mass gain is lost through oceanic erosion before reaching the ice front, and the calving flux is about 34 per cent less than previous estimates derived from iceberg tracking. In addition, the fraction of mass loss due to basal processes varies from about 10 to 90 per cent between ice shelves. We find a significant positive correlation between basal mass loss and surface elevation change for ice shelves experiencing surface lowering and enhanced discharge. We suggest that basal mass loss is a valuable metric for predicting future ice-shelf vulnerability to oceanic forcing.


Asunto(s)
Congelación , Cubierta de Hielo , Modelos Teóricos , Regiones Antárticas , Comunicaciones por Satélite
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...