Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 126(34): 6446-6453, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35984722

RESUMEN

The approaches developed for studying the polarization of molecules and the dynamics of ions in dielectric materials are usually considered separately. The two effects are often believed to take place in different frequency ranges. The low frequency response is usually dominated by ionic migration, whereas the high frequency response is played by molecular polarization. The goal here is to clarify the interplay between free and bound charge densities and their influences on permittivity and impedance profiles by proposing a version of the Poisson-Nernst-Planck (PNP) model that allows to include the effect of a frequency-dependent (and thus not instantaneous) polarizability.


Asunto(s)
Electricidad Estática , Iones
2.
Phys Rev E ; 102(2-1): 022128, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32942420

RESUMEN

We study generalized Cattaneo (telegrapher's) equations involving memory effects introduced by smearing the time derivatives. Consistency conditions where the smearing functions obey restrict freedom in their choice but the proposed scheme goes beyond the approach based on using fractional derivatives. We find conditions under which solutions of the equations considered so far can be recognized as probability distributions, i.e., are normalizable and nonnegative on their domains. Nonnegativity of solutions is demonstrated by methods of positive definite and completely monotonic functions with the Bernstein theorem being the cornerstone of the ongoing proofs. Analysis of exactly solvable examples and relevant mean-squared displacements enables us to classify diffusion processes described by such got solutions and to identify them with either ordinary or anomalous diffusion which character may change over time. To complete the present research we compare our results with those obtained using the continuous-time random-walk and the continuous-time persistent random-walk approaches.

3.
Phys Rev E ; 101(2-1): 022135, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32168676

RESUMEN

Recent experimental findings on anomalous diffusion have demanded novel models that combine annealed (temporal) and quenched (spatial or static) disorder mechanisms. The comb model is a simplified description of diffusion on percolation clusters, where the comblike structure mimics quenched disorder mechanisms and yields a subdiffusive regime. Here we extend the comb model to simultaneously account for quenched and annealed disorder mechanisms. To do so, we replace usual derivatives in the comb diffusion equation by different fractional time-derivative operators and the conventional comblike structure by a generalized fractal structure. Our hybrid comb models thus represent a diffusion where different comblike structures describe different quenched disorder mechanisms, and the fractional operators account for various annealed disorder mechanisms. We find exact solutions for the diffusion propagator and mean square displacement in terms of different memory kernels used for defining the fractional operators. Among other findings, we show that these models describe crossovers from subdiffusion to Brownian or confined diffusions, situations emerging in empirical results. These results reveal the critical role of interactions between geometrical restrictions and memory effects on modeling anomalous diffusion.

4.
Proc Math Phys Eng Sci ; 475(2231): 20190432, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31824219

RESUMEN

We investigate a connection between random walks and nonlinear diffusion equations within the framework proposed by Einstein to explain the Brownian motion. We show here how to properly modify that framework in order to handle different physical scenarios. We obtain solutions for nonlinear diffusion equations that emerge from the random walk approach and analyse possible connections with a generalized thermostatistics formalism. Finally, we conclude that fractal and fractional derivatives may emerge in the context of nonlinear diffusion equations, depending on the choice of distribution functions related to the spreading of systems.

5.
J Phys Chem B ; 123(37): 7885-7892, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31404488

RESUMEN

We investigate possible connections between two different implementations of the Poisson-Nernst-Planck (PNP) anomalous models used to analyze the electrical response of electrolytic cells. One of them is built in the framework of the fractional calculus and considers integro-differential boundary conditions also formulated by using fractional derivatives; the other one is an extension of the standard PNP model presented by Barsoukov and Macdonald, which can also be related to equivalent circuits containing constant phase elements (CPEs). Both extensions may be related to an anomalous diffusion with subdiffusive characteristics through the electrical conductivity and are able to describe the experimental data presented here. Furthermore, we apply the Bayesian inversion method to extract the parameter of interest in the analytical formulas of impedance. To resolve the corresponding inverse problem, we use the delayed-rejection adaptive-Metropolis algorithm (DRAM) in the context of Markov-chain Monte Carlo (MCMC) algorithms to find the posterior distributions of the parameter and the corresponding confidence intervals.

6.
J Phys Condens Matter ; 30(50): 505401, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30457123

RESUMEN

Recent discoveries of advanced photocontrolled materials have kindled a great deal of interest on their use as command surfaces that switch easy axis under light radiation. One noticeable point when using switchable surfaces on any application is how the dynamical process propagates to the bulk directors. In this paper, we theoretically study the effect of a relaxing easy axis over time on a nematic sample when finite anchoring energy and surface viscosity are included. We first consider the case where just one of the substrates decay over time in an initially distorted director organization. Next, we assume that both substrates can be switched simultaneously. From the calculated director we obtained the optical profile and finally the molecular response time of the material. The response time depends on both the materials and the surfaces properties including its decay time. Our results might be used for understanding and engineering liquid crystal displays and other electro-optical devices with photocontrolled alignment layers.

7.
Soft Matter ; 14(11): 2084-2093, 2018 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-29485156

RESUMEN

Surface driven pattern formation is an intriguing phenomenon in the liquid crystal field. Owing to its ability to transmit torque, one can generate different patterns by propagating distortions on the optical wavelength scale in the sample from the surface. Here, we theoretically investigate (from the elasticity point of view) twist deformations induced by a rotating easy axis at one surface, by considering the anchoring energy and surface viscosity of nematic and chiral nematic samples. The model is solved analytically in the limit of strong anchoring and numerically for a low anchoring strength situation. Such rotation could be induced, in principle, by light-controlling the orientation of an azobenzene monolayer coated at one of the glass substrates or by an in-plane rotating field. We discuss the role of the surface parameters and the different distortions, and calculate light transmission using the Jones method. Three different regimes are identified: free twist, stick-slip twist, and constrained twist. The results obtained here may be relevant for liquid crystal active waveplates and for determining surface viscosity and the azimuthal anchoring energy.

8.
J Phys Chem B ; 121(13): 2882-2886, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28293957

RESUMEN

In this study, we argue that ion motion in electrolytic cells containing Milli-Q water, weak electrolytes, or liquid crystals may exhibit unusual diffusive regimes that deviate from the expected behavior, leading the system to present an anomalous diffusion. Our arguments lie on the investigation of the electrical conductivity and its relationship with the mean square displacement, which may be used to characterize the ionic motion. In our analysis, the Poisson-Nernst-Planck diffusional model is used with extended boundary conditions to simulate the charge transfer, accumulation, and/or adsorption-desorption at the electrode surfaces.

9.
Phys Rev E ; 96(5-1): 052109, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29347710

RESUMEN

We use the H theorem to establish the entropy and the entropic additivity law for a system composed of subsystems, with the dynamics governed by the Klein-Kramers equations, by considering relations among the dynamics of these subsystems and their entropies. We start considering the subsystems governed by linear Klein-Kramers equations and verify that the Boltzmann-Gibbs entropy is appropriated to this dynamics, leading us to the standard entropic additivity, S_{BG}^{(1∪2)}=S_{BG}^{1}+S_{BG}^{2}, consistent with the fact that the distributions of the subsystem are independent. We then extend the dynamics of these subsystems to independent nonlinear Klein-Kramers equations. For this case, the results show that the H theorem is verified for a generalized entropy, which does not preserve the standard entropic additivity for independent distributions. In this scenario, consistent results are obtained when a suitable coupling among the nonlinear Klein-Kramers equations is considered, in which each subsystem modifies the other until an equilibrium state is reached. This dynamics, for the subsystems, results in the Tsallis entropy for the system and, consequently, verifies the relation S_{q}^{(1∪2)}=S_{q}^{1}+S_{q}^{2}+(1-q)S_{q}^{1}S_{q}^{2}/k, which is a nonadditive entropic relation.

10.
Proc Math Phys Eng Sci ; 472(2195): 20160502, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27956877

RESUMEN

Diffusion of particles in a heterogeneous system separated by a semipermeable membrane is investigated. The particle dynamics is governed by fractional diffusion equations in the bulk and by kinetic equations on the membrane, which characterizes an interface between two different media. The kinetic equations are solved by incorporating memory effects to account for anomalous diffusion and, consequently, non-Debye relaxations. A rich variety of behaviours for the particle distribution at the interface and in the bulk may be found, depending on the choice of characteristic times in the boundary conditions and on the fractional index of the modelling equations.

11.
PLoS One ; 11(6): e0157662, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27309358

RESUMEN

We present a generalmodel based on fractional diffusion equation coupled with a kinetic equation through the boundary condition. It covers several scenarios that may be characterized by usual or anomalous diffusion or present relaxation processes on the surface with non-Debye characteristics. A particular case of this model is used to investigate the experimental data obtained from the drug release of the capsaicinoids-loaded Poly (ε-caprolactone) microparticles. These considerations lead us to a good agreement with experimental data and to the conjecture that the burst effect, i.e., an initial large bolus of drug is released before the release rate reaches a stable profile, may be related to an anomalous diffusion manifested by the system.


Asunto(s)
Catecoles/química , Portadores de Fármacos/química , Liberación de Fármacos , Poliésteres/química , Alcaloides Solanáceos/química , Difusión , Composición de Medicamentos , Cinética , Tamaño de la Partícula
12.
Phys Rev Lett ; 115(2): 025503, 2015 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-26207479

RESUMEN

We report on an extensive characterization of the cracking noise produced by charcoal samples when dampened with ethanol. We argue that the evaporation of ethanol causes transient and irregularly distributed internal stresses that promote the fragmentation of the samples and mimic some situations found in mining processes. The results show that, in general, the most fundamental seismic laws ruling earthquakes (the Gutenberg-Richter law, the unified scaling law for the recurrence times, Omori's law, the productivity law, and Båth's law) hold under the conditions of the experiment. Some discrepancies were also identified (a smaller exponent in the Gutenberg-Richter law, a stationary behavior in the aftershock rates for long times, and a double power-law relationship in the productivity law) and are related to the different loading conditions. Our results thus corroborate and elucidate the parallel between the seismic laws and fracture experiments caused by a more complex loading condition that also occurs in natural and induced seismicity (such as long-term fluid injection and gas-rock outbursts in mining processes).

13.
Artículo en Inglés | MEDLINE | ID: mdl-26066118

RESUMEN

Stationary and time-dependent solutions of a nonlinear Kramers equation, as well as its associated nonlinear Fokker-Planck equations, are investigated within the context of Tsallis nonextensive statistical mechanics. Since no general analytical time-dependent solutions are found for such a nonlinear Kramers equation, an ansatz is considered and the corresponding asymptotic behavior is studied and compared with those known for the standard linear Kramers equation. The H-theorem is analyzed for this equation and its connection with Tsallis entropy is investigated. An application is discussed, namely the motion of Hydra cells in two-dimensional cellular aggregates, for which previous measurements have verified q-Gaussian distributions for velocity components and superdiffusion. The present analysis is in quantitative agreement with these experimental results.

14.
J Phys Chem A ; 118(31): 5983-8, 2014 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-25017719

RESUMEN

Photophysics processes are ubiquitous in nature and difficult to be quantitatively characterized by conventional spectroscopy. Alternatively, pump-probe methods have been widely applied to study these complex processes. In this context, the thermal lens technique is a precise spectroscopic tool for material characterization and presents a wide range of applications in chemical analysis. Here, we present an all numerical approach to analyze the dynamics of photophysics processes and to identify the role of individual contributions of photoreaction and mass diffusion in the thermal lens experiments. The results are essential for a proper understanding of the dominant physical mechanisms in laser-induced photodegradation, which allow precise data analysis of the effects in photosensitive fluids.

15.
Sci Rep ; 4: 4773, 2014 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-24758839

RESUMEN

Understanding the mechanisms and processes underlying the dynamics of collective violence is of considerable current interest. Recent studies indicated the presence of robust patterns characterizing the size and timing of violent events in human conflicts. Since the size and timing of violent events arises as the result of a dynamical process, we explore the possibility of unifying these observations. By analyzing available catalogs on violent events in Iraq (2003-2005), Afghanistan (2008-2010) and Northern Ireland (1969-2001), we show that the inter-event time distributions (calculated for a range of minimum sizes) obeys approximately a simple scaling law which holds for more than three orders of magnitude. This robust pattern suggests a hierarchical organization in size and time providing a unified picture of the dynamics of violent conflicts.

16.
Artículo en Inglés | MEDLINE | ID: mdl-24032971

RESUMEN

We report on a statistical analysis of the engagement in the electoral processes of all Brazilian cities by considering the number of party memberships and the number of candidates for mayor and councillor. By investigating the relationships between the number of party members and the population of voters, we have found that the functional forms of these relationships are well described by sublinear power laws (allometric scaling) surrounded by a multiplicative log-normal noise. We have observed that this pattern is quite similar to those we previously reported for the relationships between the number of candidates (mayor and councillor) and population of voters [Europhys. Lett. 96, 48001 (2011)], suggesting that similar universal laws may be ruling the engagement in the electoral processes. We also note that the power-law exponents display a clear hierarchy, where the more influential is the political position the smaller is the value of the exponent. We have also investigated the probability distributions of the number of candidates (mayor and councillor), party memberships, and voters. The results indicate that the most influential positions are characterized by distributions with very short tails, while less influential positions display an intermediate power-law decay before showing an exponential-like cutoff. We discuss the possibility that, in addition to the political power of the position, limitations in the number of available seats can also be connected with this changing of behavior. We further believe that our empirical findings point out to an under-representation effect, where the larger the city is, the larger are the obstacles for more individuals to become directly engaged in the electoral process.

17.
Artículo en Inglés | MEDLINE | ID: mdl-23767661

RESUMEN

We report on the dynamical behavior of defects of strength s=±1/2 in a lyotropic liquid crystal during the annihilation process. By following their positions using time-resolved polarizing microscopy technique, we present statistically significant evidence that the relative velocity between defect pairs is Gaussian distributed, antipersistent, and long-range correlated. We further show that simulations of the Lebwohl-Lasher model reproduce quite well our experimental findings.


Asunto(s)
Cristales Líquidos/química , Modelos Químicos , Modelos Moleculares , Modelos Estadísticos , Soluciones/química , Solventes/química , Simulación por Computador , Transición de Fase
18.
Artículo en Inglés | MEDLINE | ID: mdl-23410297

RESUMEN

The effects of an external force on a diffusive process subjected to a backbone structure are investigated by considering the system governed by a Fokker-Planck equation with drift terms. Our results show an anomalous spreading which may present different diffusive regimes connected to anomalous diffusion and stationary states.


Asunto(s)
Difusión , Modelos Químicos , Modelos Moleculares , Modelos Estadísticos , Simulación por Computador
19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(5 Pt 1): 051705, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23214803

RESUMEN

We demonstrate theoretically that the presence of ions in insulating materials such as nematic liquid crystals may be responsible for the dielectric spectroscopy behavior observed experimentally. It is shown that, at low frequencies, an essentially non-Debye relaxation process takes place due to surface effects. This is accomplished by investigating the effects of the adsorption-desorption process on the electrical response of an electrolytic cell when the generation and recombination of ions is present. The adsorption-desorption is governed by a non-usual kinetic equation in order to incorporate memory effects related to a non-Debye relaxation and the roughness of the surface. The analysis is carried out by searching for solutions to the drift-diffusion equation that satisfy the Poisson equation relating the effective electric field to the net charge density. We also discuss the effect of the mobility of the ions, i.e., situations with equal and different diffusion coefficients for positive and negative ions, on the impedance and obtain an exact expression for the admittance. The model is compared with experimental results measured for the impedance of a nematic liquid crystal sample and a very good agreement is obtained.


Asunto(s)
Iones/química , Cristales Líquidos/química , Modelos Químicos , Modelos Moleculares , Adsorción , Simulación por Computador , Impedancia Eléctrica , Propiedades de Superficie
20.
Sci Rep ; 2: 328, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22439105

RESUMEN

A wide range of physical and biological systems exhibit complex behaviours characterised by a scale-invariant structure of the fluctuations in their output signals. In the context of plant populations, scaling relationships are typically allometric. In this study, we analysed spatial variation in the size of maize plants (Zea Mays L.) grown in agricultural plots at constant densities and found evidence of scaling in the size fluctuations of plants. The findings indicate that the scaling of the probability distribution of spatial size fluctuation exhibits non-Gaussian behaviour compatible with a Lévy stable process. The scaling relationships were observed for spatial scales spanning three orders of magnitude. These findings should provide additional information for the selection and development of empirically accurate models of pattern formation in plant populations.


Asunto(s)
Productos Agrícolas/fisiología , Zea mays/fisiología , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...