RESUMEN
The endangered Mexican wolf (Canis lupus baileyi) is known to carry exceedingly low levels of genetic diversity. This could be (i) the result of long-term evolutionary patterns as they exist at the southernmost limit of the species distribution at a relatively reduced effective size, or (ii) due to rapid population decline caused by human persecution over the last century. If the former, purifying selection is expected to have minimized the impact of inbreeding. If the latter, rapid and recent declines in genetic diversity may have resulted in severe fitness consequences. To differentiate these hypotheses, we conducted comparative whole-genome analyses of five historical Mexican wolves (1907-1917) and 18 contemporary Mexican and grey wolves from North America and Eurasia. Based on whole-genome data, historical and modern Mexican wolves together form a discrete unit. Moreover, we found that modern Mexican wolves have reduced genetic diversity and increased inbreeding relative to the historical population, which was widespread across the southwestern United States and not restricted to Mexico as previously assumed. Finally, although Mexican wolves have evolved in sympatry with coyotes (C. latrans), we observed lower introgression between historical Mexican wolves and coyotes than with modern Mexican wolves, despite similarities in body size. Taken together, our data show that recent population declines probably caused the reduced level of genetic diversity, but not the observed differentiation of the Mexican wolves from other North American wolves.
Asunto(s)
Coyotes , Lobos , Animales , Coyotes/genética , Variación Genética , Genoma , México , Lobos/genéticaRESUMEN
Library preparation protocols for high-throughput DNA sequencing (HTS) include amplification steps in which errors can build up. In order to have confidence in the sequencing data, it is important to understand the effects of different Taq polymerases and PCR amplification protocols on the DNA molecules sequenced. We compared thirteen enzymes in three different marker systems: simple, single copy nuclear gene and complex multi-gene family. We also tested a modified PCR protocol, which has been suggested to reduce errors associated with amplification steps. We find that enzyme choice has a large impact on the proportion of correct sequences recovered. The most complex marker systems yielded fewer correct reads, and the proportion of correct reads was greatly affected by the enzyme used. Modified cycling conditions did reduce the number of incorrect sequences obtained in some cases, but enzyme had a much greater impact on the number of correct reads. Thus, the coverage required for the safe identification of genotypes using one of the low quality enzymes could be seven times larger than with more efficient enzymes in a biallelic system with equal amplification of the two alleles. Consequently, enzyme selection for downstream HTS has important consequences, especially in complex genetic systems.
Asunto(s)
ADN/análisis , Reacción en Cadena de la Polimerasa/métodos , Polimerasa Taq/metabolismo , Alelos , Animales , ADN Mitocondrial/análisis , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , LobosRESUMEN
By the mid 20th century, the grey wolf (Canis lupus) was exterminated from most of the conterminous United States (cUS) and Mexico. However, because wolves disperse over long distances, extant populations in Canada and Alaska might have retained a substantial proportion of the genetic diversity once found in the cUS. We analysed mitochondrial DNA sequences of 34 pre-extermination wolves and found that they had more than twice the diversity of their modern conspecifics, implying a historic population size of several hundred thousand wolves in the western cUS and Mexico. Further, two-thirds of the haplotypes found in the historic sample are unique. Sequences from Mexican grey wolves (C. l. baileyi) and some historic grey wolves defined a unique southern clade supporting a much wider geographical mandate for the reintroduction of Mexican wolves than currently planned. Our results highlight the genetic consequences of population extinction within Ice Age refugia and imply that restoration goals for grey wolves in the western cUS include far less area and target vastly lower population sizes than existed historically.
Asunto(s)
Conservación de los Recursos Naturales , Variación Genética , Lobos/genética , Alaska , Animales , Canadá , México , Densidad de Población , Lobos/clasificaciónRESUMEN
Mitochondrial DNA sequences isolated from ancient dog remains from Latin America and Alaska showed that native American dogs originated from multiple Old World lineages of dogs that accompanied late Pleistocene humans across the Bering Strait. One clade of dog sequences was unique to the New World, which is consistent with a period of geographic isolation. This unique clade was absent from a large sample of modern dogs, which implies that European colonists systematically discouraged the breeding of native American dogs.