Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 14(5)2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37241698

RESUMEN

We present the results of the luminescence response studies of a single YVO4:Yb, Er particle of 1-µm size. Yttrium vanadate nanoparticles are well-known for their low sensitivity to surface quenchers in water solutions which makes them of special interest for biological applications. First, YVO4:Yb, Er nanoparticles (in the size range from 0.05 µm up to 2 µm), using the hydrothermal method, were synthesized. Nanoparticles deposited and dried on a glass surface exhibited bright green upconversion luminescence. By means of an atomic-force microscope, a 60 × 60 µm2 square of a glass surface was cleaned from any noticeable contaminants (more than 10 nm in size) and a single particle of 1-µm size was selected and placed in the middle. Confocal microscopy revealed a significant difference between the collective luminescent response of an ensemble of synthesized nanoparticles (in the form of a dry powder) and that of a single particle. In particular, a pronounced polarization of the upconversion luminescence from a single particle was observed. Luminescence dependences on the laser power are quite different for the single particle and the large ensemble of nanoparticles as well. These facts attest to the notion that upconversion properties of single particles are highly individual. This implies that to use an upconversion particle as a single sensor of the local parameters of a medium, the additional studying and calibration of its individual photophysical properties are essential.

2.
Nanomaterials (Basel) ; 12(4)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35214930

RESUMEN

Unlike standard nanodiamonds (NDs), boron-doped nanodiamonds (BNDs) have shown great potential in heating a local environment, such as tumor cells, when excited with NIR lasers (808 nm). This advantage makes BNDs of special interest for hyperthermia and thermoablation therapy. In this study, we demonstrate that the negatively charged color center (NV) in lightly boron-doped nanodiamonds (BNDs) can optically sense small temperature changes when heated with an 800 nm laser even though the correct charge state of the NV is not expected to be as stable in a boron-doped diamond. The reported BNDs can sense temperature changes over the biological temperature range with a sensitivity reaching 250 mK/√Hz. These results suggest that BNDs are promising dual-function bio-probes in hyperthermia or thermoablation therapy as well as other quantum sensing applications, including magnetic sensing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...