Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(34): 16183-16194, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39136150

RESUMEN

Flexible-SERS (FSERS) substrates were fabricated by depositing Ni64Al36(NiAl)-alloy-microparticles and/or spherical Ag-NPs (sizes of 10-40 nm) on recycled plastics, which had an aluminum layer on their surface. First, FSERS substrates made of Al + Ag-NPs and an area of 1 cm2 were used to detect rhodamine B (RhB) molecules. The limit-of-detection (LOD) for RhB was 8.35 × 10-22 moles (∼503 molecules), and the enhancement factor (EF) was 3.11 × 1015. After adding NiAl-microparticles to the substrate, the LOD decreased to 8.35 × 10-24 moles (∼5 molecules) and the EF was increased to 2.05 × 1017. Such EF values were calculated with respect to substrates made only with Al + NiAl-alloy (without Ag-NPs), which did not show any Raman signal. Other FSERS substrates were made with graphene-layer + Ag-NPs or graphene-layer + NiAl-alloy + Ag-Nps, and the best LOD and EF values were 8.35 × 10-22 moles and 6.89 × 1015, respectively. Overall, combining the Ag-NPs and NiAl-alloy microparticles allowed for the zeptomole detection of RhB. This was possible due to the formation of Ag aggregates around the alloy microparticles, which enhanced the number of hotspots. If no alloy is present in the FSERS substrates, the detection of RhB is lowered. Overall, we presented a low-cost FSERS substrate that does not require expensive Au films or Au-NPs (as previously reported) to detect RhB at the zeptomole level.

2.
Colloids Surf B Biointerfaces ; 180: 186-192, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31054458

RESUMEN

Correlation between electrical and antibacterial properties of chitosan/copper nanocomposites (CS/CuNPs) is investigated. We aim at achieving the minimum CuNPs concentration in a CS-matrix while keeping high antibacterial activity. UV-vis, TEM and XRD measurements confirms the formation of polygonal metallic CuNPs (ca. 30-50 nm). Interactions between NH2/OH groups of CS and CuNPs were determined by FTIR and XPS suggesting Cu chelation-induced mechanism during the CuNPs formation. DC electrical conductivity measurements reveals a percolation threshold at CuNPs volumetric concentration of ca. 0.143%. Antibacterial assays against Gram-positive bacteria and DC measurements helps correlate the antibacterial potency to the electron transfer between the negatively charged bacteria and CuNPs. Our study suggests that nanocomposite's maximum antibacterial activity is obtained below the electrical percolation threshold at extremely low CuNPs concentrations; this fact may prove useful in the design of nontoxic nanocomposites for biomedical applications.


Asunto(s)
Antibacterianos/farmacología , Quitosano/farmacología , Cobre/farmacología , Electricidad , Nanocompuestos/química , Conductividad Eléctrica , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Nanocompuestos/ultraestructura , Espectroscopía de Fotoelectrones , Espectroscopía Infrarroja por Transformada de Fourier , Staphylococcus aureus/efectos de los fármacos , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA