Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Indian J Microbiol ; 62(3): 447-455, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35974908

RESUMEN

The dependency on non-renewable fossil fuels as an energy source has drastically increased global temperatures. Their continuous use poses a great threat to the existing energy reserves. Therefore, the energy sector has taken a turn toward developing eco-friendly, sustainable energy generation by using sustainable lignocellulosic wastes, such as rice straw (RS). For lignocellulosic waste to be utilized as an efficient energy source, it needs to be broken down into less complex forms by pretreatment processes, such as alkaline pretreatment using NaOH. Varied NaOH concentrations (0.5%,1.0%,1.5%,2%) for alkaline pretreatment of RS were used for the holocellulose generation. Amongst the four NaOH concentrations tested, RS-1.5% exhibited higher holocellulose generation of 80.1%, whereas 0.5%, 1 5 and 2% pointed 71.9%, 73.8%, and 78.5% holocellulose generation, respectively. Further, microbial fuel cells (MFCs) were tested for voltage generation by utilizing holocellulose generated from untreated (RS-0%) and mildly alkaline pretreated RS (RS-1.5%) as a feedstock. The MFC voltage and maximum power generation using RS-0% were 194 mV and 167 mW/m2, respectively. With RS-1.5%, the voltage and maximum power generation were 556 mV and 583 mW/m2, respectively. The power density of RS-1.5% was three-fold higher than that of RS-0%. The increase in MFC power generation suggests that alkaline pretreatment plays a crucial role in enhancing the overall performance.

2.
Indian J Microbiol ; 59(3): 370-374, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31388216

RESUMEN

Immobilization of enzymes through metal-based system is demonstrated as a promising approach to enhance its properties. In this study, the influence of metals ions, including copper, cobalt and zinc (Zn) on the immobilization of ß-glucosidase (BGL) through the synthesis of protein-inorganic hybrid was evaluated at 4 °C. Among these metal ions-based hybrids, Zn showed the highest encapsulation yield and relative activity of 87.5 and 207%, respectively. Immobilized BGL exhibited higher pH and temperature stability compared to free form. Thermal stability of hybrid improved up to 26-fold at 60 °C. After 10 cycles of reuse, immobilized enzyme retained 93.8% of residual activity. These results suggested that metal ions played a significant role in the enzyme immobilization as a protein-inorganic hybrid. Overall, this strategy can be potentially applied to enhance the properties of enzymes though effective encapsulation for the broad biotechnological applications.

3.
Bioresour Technol ; 263: 25-32, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29729538

RESUMEN

In the present study, co-cultures of the methanotrophs Methylocella tundrae, Methyloferula stellata, and Methylomonas methanica were evaluated for improving methanol production with their application. Among the different combinations, the co-culture of M. tundrae and M. methanica increased methanol production to 4.87 mM using methane (CH4) as feed. When simulated biogas mixtures were used as feed, the maximum methanol production was improved to 8.66, 8.45, and 9.65 mM by free and encapsulated co-cultures in 2% alginate and silica-gel, respectively. Under repeated batch conditions, free and immobilized co-cultures using alginate and silica-gel resulted in high cumulative production, up to 24.43, 35.95, and 47.35 mM, using simulated biohythane (CH4 and hydrogen), respectively. This is the first report of methanol production from defined free and immobilized co-cultures using simulated biogas mixtures as feed.


Asunto(s)
Biocombustibles , Metanol , Methylomonas , Hidrógeno , Metano
4.
J Microbiol Biotechnol ; 28(4): 638-644, 2018 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-29385669

RESUMEN

In this study, the immobilization of xylanase using a protein-inorganic hybrid nanoflower system was assessed to improve the enzyme properties. The synthesis of hybrid xylanase nanoflowers was very effective at 4°C for 72 h, using 0.25 mg/ml protein, and efficient immobilization of xylanase was observed, with a maximum encapsulation yield and relative activity of 78.5% and 148%, respectively. Immobilized xylanase showed high residual activity at broad pH and temperature ranges. Using birchwood xylan as a substrate, the Vmax and Km values of xylanase nanoflowers were 1.60 mg/ml and 455 µmol/min/mg protein, compared with 1.42 mg/ml and 300 µmol/min/mg protein, respectively, for the free enzyme. After 5 and 10 cycles of reuse, the xylanase nanoflowers retained 87.5% and 75.8% residual activity, respectively. These results demonstrate that xylanase immobilization using a protein-inorganic hybrid nanoflower system is an effective approach for its potential biotechnological applications.


Asunto(s)
Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Inmovilización , Xilosidasas/metabolismo , Biotecnología , Activación Enzimática , Pruebas de Enzimas , Estabilidad de Enzimas , Eurotiales/enzimología , Concentración de Iones de Hidrógeno , Compuestos Inorgánicos/química , Cinética , Nanopartículas/química , Temperatura , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...