Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 216(Pt 4): 114772, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36379235

RESUMEN

In this work nanocomposites based on alginate (Alg) and halloysite as a nanotubular clay (Hy) were developed. Characterization techniques reveal that Hy/Alg nanocomposites are cation exchangers with predominantly negative charge density and good thermal stability. The adsorption equilibrium of Cd(II) in aqueous solution onto Hy/Alg nanocomposites revealed that by increasing the mass of halloysite in the nanocomposite, the adsorption capacity diminished significantly due to the halloysite-alginate interactions. Maximum adsorption capacities of 8, 65, 88, and 132 mg/g of Cd(II) were obtained for samples Hy, Hy/Alg 50%, Hy/Alg 95%, and Alg, respectively. In addition, the adsorption equilibrium of Cd(II) on the Hy/Alg bionanocomposites was affected by the pH and temperature of the solution, demonstrating the presence of electrostatic interactions during adsorption and that this is an exothermic process. The controlling mechanism of adsorption was cation exchange influenced by electrostatic forces. The Cd(II) adsorption rate studies were interpreted by the diffusion-permeation model and reveal that the presence of Hy in the structure of the nanocomposites enhances the permeation coefficient, that is, the adsorption rate was increased. The values of the permeation coefficient varied from 1.95 × 10-7 to 8.50 × 10-7 cm2/s for Hy/Alg 50% and from 1.70 × 10-7 to 3.55 × 10-7 cm2/s for Hy/Alg 95%.


Asunto(s)
Alginatos , Nanocompuestos , Arcilla/química , Adsorción , Alginatos/química , Cadmio , Minerales , Cinética , Concentración de Iones de Hidrógeno
2.
J Environ Manage ; 169: 303-12, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26773434

RESUMEN

The natural sawdust (NS) from white pine (Pinus durangensis) was chemically modified by a hydrothermal procedure using citric, malonic and tartaric acids. The adsorption capacity of modified sawdust (MS) towards Pb(II) was considerably enhanced due to the introduction of carboxylic groups on the surface of MS during the modification, and the adsorption capacity was almost linearly dependent on the concentration of carboxylic sites. The NS surface was acidic, and the MS surface became more acidic after the modification. At T = 25 °C and pH = 5, the maximum adsorption capacity of the optimal MS towards Pb(II) was 304 mg/g, which is exceptionally high compared to NS and other MS reported previously. The adsorption capacity of MS was considerably reduced from 304 to 154 mg/g by decreasing the solution pH from 5 to 3 due to electrostatic interactions. The adsorption of Pb(II) on MS was reversible at pH = 2, but not at pH = 5. The contribution percentage of ion exchange to the overall adsorption capacity ranged from 70 to 99% and 10-66% at the initial pH of 3 and 5, respectively. Hence, the adsorption of Pb(II) on MS was mainly due to ion exchange at pH = 3 and to both ion exchange and electrostatic attraction at pH = 5.


Asunto(s)
Plomo/química , Pinus , Purificación del Agua/métodos , Madera , Adsorción , Concentración de Iones de Hidrógeno , Intercambio Iónico , Soluciones
3.
J Colloid Interface Sci ; 436: 276-85, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25280372

RESUMEN

The adsorption of the antibiotic metronidazole (MNZ) on activated carbon (F400), activated carbon cloth (ACF), mesoporous activated carbon (CMK-3), and carbon nanotubes (MWCNT) was investigated in this work. The effect of the adsorbent-adsorbate interactions as well as the operating conditions (ionic strength, solution pH, temperature, chemical modification of the adsorbents by HNO3 treatment, and water matrix) on the adsorption capacity were analyzed to substantiate the adsorption mechanism. The adsorption capacity markedly varied as function of the carbon material, decreasing in the following order: F400>ACF>F400-HNO3>CMK-3>MWCNT>MWCNT-HNO3, and depended not only on their surface area and pore size distribution, but also on their chemical nature. The adsorption of MNZ was influenced by the solution pH, but was not significantly affected by the ionic strength and temperature. The adsorption of MNZ was enhanced when the MNZ solutions were prepared using wastewater. Therefore, the electrolytes present in the wastewater cooperated rather than competed with the MNZ molecules for the adsorption sites. Desorption equilibrium data of MNZ on all carbon materials demonstrated that the adsorption was reversible corroborating the weakness of the adsorbent-adsorbate interactions.


Asunto(s)
Antiinfecciosos/aislamiento & purificación , Carbono/química , Metronidazol/aislamiento & purificación , Adsorción , Antiinfecciosos/química , Concentración de Iones de Hidrógeno , Metronidazol/química , Agua/química
4.
J Colloid Interface Sci ; 301(1): 40-5, 2006 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16730018

RESUMEN

The ion exchange equilibrium of Pb(II) on clinoptilolite modified with NH(4)Cl and NaCl can be represented by two types of isotherms. The first one is the ion exchange isotherm based upon the constant of thermodynamic equilibrium for the ion exchange reaction; however, the fitting procedure for this isotherm can be very tedious due to all the calculations involved and additional thermodynamic data. The second one is the Langmuir isotherm. The use of the Langmuir isotherm to represent ion exchange equilibrium has increased in recent last years since it adequately fits the equilibrium data and, furthermore, its calculation is much simpler. A comparison between the two isotherms showed that they fitted the experimental data reasonably well, but the Langmuir isotherm is much simpler and easier to use.

5.
J Hazard Mater ; 90(1): 27-38, 2002 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-11777590

RESUMEN

Adsorption isotherms were measured experimentally for Zn(II) adsorption from aqueous solution onto commercial activated carbons C, F-400, F-300 and Centaur HSL in a batch adsorber. The effects of carbon type and solution pH on adsorption isotherms were evaluated in this work. Nearly three times as much Zn(II) adsorbed onto C carbon as on the other three carbon types. The adsorption isotherm for Zn(II) was dependent on solution pH since Zn(II) did not adsorb to carbon below pH 2, and the adsorption isotherm increased as pH increased from 3 to 7. The adsorption isotherm of Zn(II) on C carbon was temperature independent while on F-400 the isotherm showed unusual behavior as temperature increased.


Asunto(s)
Carbono/química , Zinc/química , Adsorción , Concentración de Iones de Hidrógeno , Temperatura , Contaminantes del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA