Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(51): 57251-57264, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36516434

RESUMEN

Herein, a strategy combining colorimetry and inner filter effect (IFE)-based fluorometry was developed for multimode visualization of food dyes (FDs) using CdTe quantum-dots-doped fluorescent indicator papers as a sample-to-answer device. Colorimetry was straightforwardly achieved by FDs extraction through electrostatic interaction and hydrophobic effect while fluorometry was implemented by IFE-induced fluorescence quenching. RGB/gray-scale values of colorimetry and fluorometry were furtherly picked by a smartphone application and applied to reconstruct color information-based digital image analysis for both direct alignments and linear regression analysis. The apparent color and fluorescence of FDs-bound indicator papers, together with their digitized color information, showed a good mapping to FDs concentrations in the range of 0-0.5 mg/mL for Sunset Yellow, 0-0.2 mg/mL for Allura Red, and 0-0.08 mg/mL for Brilliant Blue. As a proof of concept, the dosages of these FDs in real beverages and simulated dye effluents were deduced and cross-validated by different visualization modes, and finally double-checked by instrumental techniques such as spectrometric methods, high-performance liquid chromatography (HPLC), and mass spectroscopy (MS). The above findings concluded that (i) IFE mechanism is generally applicable to build fluorometric systems and (ii) cross validation of different visualization modes can markedly improve detection accuracy, which may provide references for design and fabrication of novel "lab-on-paper" devices for visualization applications with high reliability.


Asunto(s)
Compuestos de Cadmio , Puntos Cuánticos , Colorimetría , Reproducibilidad de los Resultados , Puntos Cuánticos/química , Telurio/química , Fluorometría , Colorantes Fluorescentes/química , Carbono/química
2.
Front Plant Sci ; 13: 1036254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36420018

RESUMEN

The homeodomain-leucine zipper protein HAT belongs to the homeodomain leucine zipper subfamily (HD-Zip) and is important for regulating plant growth and development and stress tolerance. To investigate the role of HAT5 in tolerance to drought, salt, and low temperature stress, we selected a HAT gene from Pyrus sinkiangensis Yü (Pyrus sinkiangensis T.T. Yu). The sequences were analyzed using ioinformatics, and the overexpressed tomato lines were obtained using molecular biology techniques. The phenotypes, physiological, and biochemical indexes of the wild-type and transgenic tomato lines were observed under different stress conditions. We found that the gene had the highest homology with PbrHAT5. Under drought and NaCl stress, osmotic regulatory substances (especially proline) were significantly accumulated, and antioxidant enzyme activities were enhanced. The malondialdehyde level and relative electrical conductivity of transgenic tomatoes under low temperature (freezing) stress were significantly higher than those of wild-type tomatoes. The reactive oxygen species scavenging system was unbalanced. This study found that PsHAT5 improved the tolerance of tomatoes to drought and salt stress by regulating proline metabolism and oxidative stress ability, reducing the production of reactive oxygen species, and maintaining normal cell metabolism. In conclusion, the PsHAT5 transcription factor has great potential in crop resistance breeding, which lays a theoretical foundation for future excavation of effective resistance genes of the HD-Zip family and experimental field studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...