Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Nat Chem Biol ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030363

RESUMEN

Lysine L-lactylation (Kl-la) is a novel protein posttranslational modification (PTM) driven by L-lactate. This PTM has three isomers: Kl-la, N-ε-(carboxyethyl)-lysine (Kce) and D-lactyl-lysine (Kd-la), which are often confused in the context of the Warburg effect and nuclear presence. Here we introduce two methods to differentiate these isomers: a chemical derivatization and high-performance liquid chromatography analysis for efficient separation, and isomer-specific antibodies for high-selectivity identification. We demonstrated that Kl-la is the primary lactylation isomer on histones and dynamically regulated by glycolysis, not Kd-la or Kce, which are observed when the glyoxalase system was incomplete. The study also reveals that lactyl-coenzyme A, a precursor in L-lactylation, correlates positively with Kl-la levels. This work not only provides a methodology for distinguishing other PTM isomers, but also highlights Kl-la as the primary responder to glycolysis and the Warburg effect.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39051862

RESUMEN

Photothermal therapy (PTT) has emerged as a noninvasive and precise cancer treatment modality known for its high selectivity and lack of drug resistance. However, the clinical translation of many PTT agents is hindered by the limited biodegradability of inorganic nanoparticles and the instability of organic dyes. In this study, a peptide conjugate, IR820-Cys-Trp-Glu-Trp-Thr-Trp-Tyr (IR820-C), was designed to self-assemble into nanoparticles for both potent PTT and vascular disruption in melanoma treatment. When co-assembled with the poorly soluble vascular disrupting agent (VDA) combretastatin A4 (CA4), the resulting nanoparticles (IR820-C@CA4 NPs) accumulate efficiently in tumors, activate systemic antitumor immune responses, and effectively ablate melanoma with a single treatment and near-infrared irradiation, as confirmed by our in vivo experiments. Furthermore, by exploiting the resulting tumor hypoxia, we subsequently administered the hypoxia-activated prodrug tirapazamine (TPZ) to capitalize on the created microenvironment, thereby boosting therapeutic efficacy and antimetastatic potential. This study showcases the potential of short-peptide-based nanocarriers for the design and development of stable and efficient photothermal platforms. The multifaceted therapeutic strategy, which merges photothermal ablation with vascular disruption and hypoxia-activated chemotherapy, holds great promise for advancing the efficacy and scope of cancer treatment modalities.

3.
Transl Oncol ; 48: 102065, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39053343

RESUMEN

Numerous recent studies have underscored the indispensable roles of long non-coding RNAs (lncRNAs) in various diseases. However, their precise mechanisms in urinary bladder cancer (UBC) remain to be further elucidated. To delve into this inquiry, online databases were analyzed to identify differentially expressed lncRNAs in UBC, followed by the functional experiments in vivo and in vitro functional experiments. GAS6-AS1 exhibited high expression levels in UBC tissues and was shown to regulate the proliferation, migration, invasion, and cell cycle progression of UBC cells in vitro and in vivo. Then, a series of molecular biology experiments, including RNA pull-down, dual-luciferase reporter gene assays, RNA immunoprecipitation (RIP) assays, fluorescent in situ hybridization (FISH), and the triplex-capture assay demonstrated its interaction with miR-367-3p and PRC1. Mechanistically, GAS6-AS1 was found to enhance MMP7 expression by sequestering miR-367-3p. Moreover, GAS6-AS1 inhibited APC transcription by binding with PRC1, thereby activating several oncogenes downstream of the WNT pathway. To sum up, GAS6-AS1 promotes UBC progression through two distinct axes: the GAS6-AS1/miR-367-3p/MMP7 axis and the GAS6-AS1/PRC1/APC/Wnt/MMP7 axis, respectively. As a potential biomarker for UBC, GAS6-AS1 holds promising prospects for the diagnosis, treatment, and prognosis of UBC.

4.
Angew Chem Int Ed Engl ; 63(28): e202404703, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38655625

RESUMEN

Self-assembly in living cells represents one versatile strategy for drug delivery; however, it suffers from the limited precision and efficiency. Inspired by viral traits, we here report a cascade targeting-hydrolysis-transformation (THT) assembly of glycosylated peptides in living cells holistically resembling viral infection for efficient cargo delivery and combined tumor therapy. We design a glycosylated peptide via incorporating a ß-galactose-serine residue into bola-amphiphilic sequences. Co-assembling of the glycosylated peptide with two counterparts containing irinotecan (IRI) or ligand TSFAEYWNLLSP (PMI) results in formation of the glycosylated co-assemblies SgVEIP, which target cancer cells via ß-galactose-galectin-1 association and undergo galactosidase-induced morphological transformation. While GSH-reduction causes release of IRI from the co-assemblies, the PMI moieties release p53 and facilitate cell death via binding with protein MDM2. Cellular experiments show membrane targeting, endo-/lysosome-mediated internalization and in situ formation of nanofibers in cytoplasm by SgVEIP. This cascade THT process enables efficient delivery of IRI and PMI into cancer cells secreting Gal-1 and overexpressing ß-galactosidase. In vivo studies illustrate enhanced tumor accumulation and retention of the glycosylated co-assemblies, thereby suppressing tumor growth. Our findings demonstrate an in situ assembly strategy mimicking viral infection, thus providing a new route for drug delivery and cancer therapy in the future.


Asunto(s)
Sistemas de Liberación de Medicamentos , Glicopéptidos , Humanos , Glicopéptidos/química , Glicopéptidos/metabolismo , Animales , Virosis/tratamiento farmacológico , Virosis/metabolismo , Irinotecán/química , Irinotecán/farmacología , Ratones , Línea Celular Tumoral
5.
Animals (Basel) ; 14(3)2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38338015

RESUMEN

This study explored the effects of dietary protein levels on Litopenaeus vannamei with its intestinal microbiota and transcriptome responses. Previous studies on the effects of dietary protein levels on L. vannamei have focused on growth performance, antioxidant indices, and digestive enzyme activity, but few studies have been conducted at the microbiological and molecular levels. In this study, five isolipid experimental diets with protein levels of 32% (P32), 36% (P36), 40% (P40), 44% (P44), and 48% (P48) were used in an L. vannamei (0.63 ± 0.02 g) feeding trial for 56 days. At the end of the feeding trial, the growth performance, immunity, intestinal health, and transcriptional responses of L. vannamei were determined. This study demonstrated that higher protein levels (P44) led to superior weight gain and growth rates for L. vannamei, with lower feed conversion ratios (FCR) observed in the P48 and P44 groups compared to the P32 and P36 groups (p ≤ 0.05). The P44 and P48 groups also showed a notably higher protein efficiency ratio (PER) compared to others (p ≤ 0.05), and there was no significant difference between them. Upon Vibrio parahaemolyticus infection, the P48 group exhibited a significantly lower survival rate (SR) within 48 h, while during 72 h of white spot syndrome virus (WSSV) infection, the P44 group had a notably higher survival rate than the P32 group (p ≤ 0.05). Digestive enzyme activity and antioxidant levels in L. vannamei initially increased and then decreased as protein levels increased, usually peaking in the P40 or P44 groups. Lower dietary protein levels significantly reduced the relative abundance of beneficial bacteria and increased the relative abundance of pathogenic bacteria in the intestines of L. vannamei. Transcriptome sequencing analysis revealed that most differentially expressed genes (DEGs) were up-regulated and then down-regulated as dietary protein levels increased. Furthermore, KEGG pathway enrichment analysis indicated that several immune and metabolic pathways, including metabolic pathways, glutathione metabolism, cytochrome P450, and lysosome and pancreatic secretion, were significantly enriched. In summary, the optimal feed protein level for L. vannamei shrimp was 40-44%. Inappropriate feed protein levels reduced antioxidant levels and digestive enzyme activity and promoted pathogen settlement, deceasing factors in various metabolic pathways that respond to microorganisms through transcriptional regulation. This could lead to stunted growth in L. vannamei and compromise their immune function.

6.
Anal Chem ; 96(6): 2292-2296, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38295309

RESUMEN

Investigating the connection between reactive oxygen species (ROS) and oxidative protein unfolding is critical to reveal the mechanisms underlying disease involving elevated ROS and protein misfolding. This could inform the development of therapeutics targeting cells based on their redox status. In this study, we developed a plasma-droplet fusion-mass spectrometry platform to rapidly assess protein resilience to ROS. This home-built system fuses ROS generated from the microplasma source with protein microdroplets from a tunable nanospray source. At the droplet-plasma intersection, ROS interact with proteins before entering the mass spectrometer for mass identification and structural characterization. Benefiting from the small-sized microdroplet with adjustable traveling velocity, the platform enables the first sub-millisecond kinetic study of ROS-induced protein unfolding, with a rate constant of approximately 1.81 ms-1. Capturing ROS-induced protein unfolding intermediates and the resultant ligand release dynamics can be extended to many more protein systems. We foresee broad applications for establishing previously undetected protein unfolding events when biologically impactful ROS are enriched in time and space with functional proteins and complexes.


Asunto(s)
Desplegamiento Proteico , Proteínas , Especies Reactivas de Oxígeno/metabolismo , Espectrometría de Masas
7.
Angew Chem Int Ed Engl ; 62(48): e202312837, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37837247

RESUMEN

Due to their limited capacity for π-backdonation, isolation of π-complexes of main-group elements remains a great challenge. We report herein the synthesis of a homoleptic diphosphene lead complex (2) from the degradation of P4 with a bis(germylene)-stabilized Pb(0) complex. Structural and computational studies showed that 2 possesses significant π bonding interactions between Pb atom and diphosphene ligands, which is reminiscent of transition-metal diphosphene complexes. Consistent with its unique electronic structure, complex 2 can deliver Pb(0) atoms to perform redox reaction with an iminoquinone to produce a cyclic plumbylene (4) and perform 2,5-dimethyl-3,4-dimethylimidazol-1-ylidene (IMe2 Me2 ) induced phosphorus cation abstraction to give an anionic PbP3 complex (6).

8.
Angew Chem Int Ed Engl ; 62(49): e202314578, 2023 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-37870078

RESUMEN

The presence of disordered region or large interacting surface within proteins significantly challenges the development of targeted drugs, commonly known as the "undruggable" issue. Here, we report a heterogeneous peptide-protein assembling strategy to selectively phosphorylate proteins, thereby activating the necroptotic signaling pathway and promoting cell necroptosis. Inspired by the structures of natural necrosomes formed by receptor interacting protein kinases (RIPK) 1 and 3, the kinase-biomimetic peptides are rationally designed by incorporating natural or D -amino acids, or connecting D -amino acids in a retro-inverso (DRI) manner, leading to one RIPK3-biomimetic peptide PR3 and three RIPK1-biomimetic peptides. Individual peptides undergo self-assembly into nanofibrils, whereas mixing RIPK1-biomimetic peptides with PR3 accelerates and enhances assembly of PR3. In particular, RIPK1-biomimetic peptide DRI-PR1 exhibits reliable binding affinity with protein RIPK3, resulting in specific cytotoxicity to colon cancer cells that overexpress RIPK3. Mechanistic studies reveal the increased phosphorylation of RIPK3 induced by RIPK1-biomimetic peptides, elucidating the activation of the necroptotic signaling pathway responsible for cell death without an obvious increase in secretion of inflammatory cytokines. Our findings highlight the potential of peptide-protein hybrid aggregation as a promising approach to address the "undruggable" issue and provide alternative strategies for overcoming cancer resistance in the future.


Asunto(s)
Apoptosis , Péptidos , Apoptosis/fisiología , Muerte Celular , Fosforilación , Péptidos/farmacología , Aminoácidos
9.
J Am Soc Mass Spectrom ; 34(10): 2289-2295, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37682774

RESUMEN

Compared with monoclonal antibodies, polyclonal antibodies (pAbs) have rather significant characteristics, including lower cost, shorter production cycle, and higher affinity. Therefore, to facilitate their applications in clinic, it is equally critical to comprehensively characterize the conformational stabilities of pAb at the molecular weight-resolved scale, which is technically challenging due to the lack of an effective analytical tool capable of simultaneously providing both stability and molecular weight information within an acceptable error range. Ion mobility-mass spectrometry (IM-MS) has grown as an alternative to rapidly assess protein conformational stability with accurate molecular weight information maintained, especially when equipped with a collision-induced unfolding (CIU) regime. Dynamic and transient conformational intermediates can be captured with the CIU-IM-MS technique, adding to traditional static structural measurements with collisional cross section. Most CIU-IM-MS-centered protocols are focusing on the application to isolated, targeted protein ions, namely, analyzing one single charge state at one time, limiting its analytical throughput and speed. In this study, we employed an enhanced unfolding regime, all ion unfolding (AIU), capable of the simultaneous operation of numerous ions at a time during stepped unfolding processes to analyze pAb. Results show that AIU can quantitatively characterize the subtle differences in conformational stability among four structurally similar pAbs with improved resolving capability by around a 2-4-fold increment in both stability and structure differentiating parameters. Besides, AIU also benefits from considerably saved time cost and improved spectrum quality with an elevated signal-to-noise ratio.


Asunto(s)
Anticuerpos Monoclonales , Desplegamiento Proteico , Espectrometría de Masas/métodos , Anticuerpos Monoclonales/química , Estabilidad Proteica , Iones/química
10.
Anal Chem ; 95(29): 10895-10902, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37433088

RESUMEN

Conjugate vaccines have been demonstrated to be a promising strategy for immunotherapeutic intervention in substance use disorder, wherein a hapten structurally similar to the target drug is conjugated to an immunogenic carrier protein. The antibodies generated following immunization with these species can provide long-lasting protection against overdose through sequestration of the abused drug in the periphery, which mitigates its ability to cross the blood-brain barrier. However, these antibodies exhibit a high degree of heterogeneity in structure. The resultant variations in chemical and structural compositions have not yet been clearly linked to the stability that directly affects their in vivo functional performance. In this work, we describe a rapid mass-spectrometry-based analytical workflow capable of simultaneous and comprehensive interrogation of the carrier protein-dependent heterogeneity and stability of crude polyclonal antibodies in response to conjugate vaccines. Quantitative collision-induced unfolding-ion mobility-mass spectrometry with an all-ion mode is adapted to rapidly assess the conformational heterogeneity and stability of crude serum antibodies collected from four different vaccine conditions, in an unprecedented manner. A series of bottom-up glycoproteomic experiments was performed to reveal the driving force underlying these observed heterogeneities. Overall, this study not only presents a generally applicable workflow for fast assessment of crude antibody conformational stability and heterogeneity at the intact protein level but also leverages carrier protein optimization as a simple solution to antibody quality control.


Asunto(s)
Anticuerpos , Inmunización , Haptenos , Vacunas Conjugadas/química , Proteínas Portadoras
11.
Chem Sci ; 14(22): 5936-5944, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37293657

RESUMEN

Growing evidence supports the confident association between distinct amyloid beta (Aß) isoforms and Alzheimer's Disease (AD) pathogenesis. As such, critical investigations seeking to uncover the translational factors contributing to Aß toxicity represent a venture of significant value. Herein, we comprehensively assess full-length Aß42 stereochemistry, with a specific focus on models that consider naturally-occurring isomerization of Asp and Ser residues. We customize various forms of d-isomerized Aß as natural mimics, ranging from fragments containing a single d residue to full length Aß42 that includes multiple isomerized residues, systematically evaluating their cytotoxicity against a neuronal cell line. Combining multidimensional ion mobility-mass spectrometry experimental data with replica exchange molecular dynamics simulations, we confirm that co-d-epimerization at Asp and Ser residues within Aß42 in both N-terminal and core regions effectively reduces its cytotoxicity. We provide evidence that this rescuing effect is associated with the differential and domain-specific compaction and remodeling of Aß42 secondary structure.

12.
Biomed Pharmacother ; 161: 114534, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36933376

RESUMEN

Chrysin is a natural flavonoid compound that has antioxidant and neuroprotective effects. Cerebral ischemia reperfusion (CIR) is closely connected with increased oxidative stress in the hippocampal CA1 region and homeostasis disorder of transition elements such as iron (Fe), copper (Cu) and zinc (Zn). This exploration was conducted to elucidate the antioxidant and neuroprotective effects of chrysin based on transient middle cerebral artery occlusion (tMCAO) in rats. Experimentally, sham group, model group, chrysin (50.0 mg/kg) group, Ginaton (21.6 mg/kg) group, Dimethyloxallyl Glycine (DMOG, 20.0 mg/kg) + chrysin group and DMOG group were devised. The rats in each group were performed to behavioral evaluation, histological staining, biochemical kit detection, and molecular biological detection. The results indicated that chrysin restrained oxidative stress and the rise of transition element levels, and regulated transition element transporter levels in tMCAO rats. DMOG activated hypoxia-inducible factor-1 subunit alpha (HIF-1α), reversed the antioxidant and neuroprotective effects of chrysin, and increased transition element levels. In a word, our findings emphasize that chrysin plays a critical role in protecting CIR injury via inhibiting HIF-1α against enhancive oxidative stress and raised transition metal levels.


Asunto(s)
Isquemia Encefálica , Fármacos Neuroprotectores , Daño por Reperfusión , Elementos de Transición , Ratas , Animales , Antioxidantes/farmacología , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Hipocampo , Estrés Oxidativo , Flavonoides/farmacología , Flavonoides/uso terapéutico , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Daño por Reperfusión/patología , Elementos de Transición/farmacología
13.
Anal Chem ; 95(4): 2221-2228, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36635260

RESUMEN

Stereochemical modifications (SCMs), mostly present in the form of d-amino acid substitution, have been increasingly identified from a wide range of neuropeptides and disease-associated biomarker proteins. Traditional mass spectrometry-based SCM identification has been effectively enhanced with technological and strategic advancements in ion mobility spectrometry. With the additional separation provided by ion mobility, SCM-induced structural changes can be probed both in theory and in practice, although the structural resolution for low-abundance SCMs still requires further improvement to enable accurate quantification or unambiguous identification of stereoisomers. Herein, we present a multi-component-enabled multidimensional ion mobility-mass spectrometry (3M-IM-MS) analytical workflow, based upon the metal-enhanced chiral amplification strategy we proposed previously (Nat. Commun., 2019, 5038). Notably, the 3M-IM-MS strategy comprises and features the powerful mathematical tools of continuous wavelet transform and Gaussian fitting-enabled peak splitting. Consequently, the resolving capability of ion mobility spectrometry for SCM analysis has been significantly enhanced, providing mobility profiles with baseline separation and more than fivefold improvement in resolving power and overall resolution. This study represents an alternative toward ultrahigh-resolution structural interrogation of mixtures with very small differences, featuring an important and long-lasting topic in chemical measurement.


Asunto(s)
Espectrometría de Movilidad Iónica , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos
14.
J Am Soc Mass Spectrom ; 33(6): 944-951, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35508074

RESUMEN

Structural analysis by native ion mobility-mass spectrometry provides a direct means to characterize protein interactions, stability, and other biophysical properties of disease-associated biomolecules. Such information is often extracted from collision-induced unfolding (CIU) experiments, performed by ramping a voltage used to accelerate ions entering a trap cell prior to an ion mobility separator. Traditionally, to simplify data analysis and achieve confident ion identification, precursor ion selection with a quadrupole is performed prior to collisional activation. Only one charge state can be selected at one time, leading to an imbalance between the total time required to survey CIU data across all protein charge states and the resulting structural analysis efficiency. Furthermore, the arbitrary selection of a single charge state can inherently bias CIU analyses. We herein aim to compare two conformation sampling methods for protein gas-phase unfolding: (1) traditional quadrupole selection-based CIU and (2) nontargeted, charge selection-free and shotgun workflow, all ion unfolding (AIU). Additionally, we provide a new data interpretation method that integrates across all charge states to project collisional cross section (CCS) data acquired over a range of activation voltages to produce a single unfolding fingerprint, regardless of charge state distributions. We find that AIU in combination with CCS accumulation across all charges offers an opportunity to maximize protein conformational information with minimal time cost, where additional benefits include (1) an improved signal-to-noise ratios for unfolding fingerprints and (2) a higher tolerance to charge state shifts induced by either operating parameters or other factors that affect protein ionization efficiency.


Asunto(s)
Espectrometría de Movilidad Iónica , Desplegamiento Proteico , Espectrometría de Movilidad Iónica/métodos , Iones/química , Espectrometría de Masas/métodos , Conformación Proteica , Proteínas/química
15.
Anal Chem ; 94(9): 3774-3781, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35189681

RESUMEN

Many metabolites, including amino acids, neurotransmitters, and pharmaceuticals, contain primary amine functional groups. The analysis of these molecules by mass spectrometry (MS) plays an important role in the study of cancers and psychogenic diseases. However, the MS-based detection and visualization of these bioactive metabolites directly from real biological systems still suffer from challenges such as low ionization efficiency and/or matrix interference effects. Here, we introduce a simple and efficient strategy, the nanosecond photochemical reaction (nsPCR)-enabled fast chemical derivatization, enabling direct MS analysis of primary amine-containing metabolites, with enhanced detection sensitivity for numerous metabolites from cell culture medium and rat brain sections. Furthermore, this nsPCR-based chemical derivatization strategy was demonstrated to be a useful visualizing tool that could provide improved spatial information for these metabolites, potentially offering alternative tools for gaining novel insights into metabolic events.


Asunto(s)
Aminas , Aminoácidos , Aminas/química , Aminoácidos/análisis , Animales , Indicadores y Reactivos , Neurotransmisores , Ratas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
16.
Anal Chem ; 94(4): 2142-2153, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35050568

RESUMEN

Protein sialylation has been closely linked to many diseases including Alzheimer's disease (AD). It is also broadly implicated in therapeutics operating in a pattern-dependent (e.g., Neu5Ac vs Neu5Gc) manner. However, how the sialylation pattern affects the AD-associated, transferrin-assisted iron/Aß cellular uptake process remains largely ill-defined. Herein, we report the use of native ion mobility-mass spectrometry (IM-MS)-based fast structural probing methodology, enabling well-controlled, synergistic, and in situ manipulation of mature glycoproteins and attached sialic acids. IM-MS-centered experiments enable the combinatorial interrogation of sialylation effects on Aß cytotoxicity and the chemical, conformational, and topological stabilities of transferrin. Cell viability experiments suggest that Neu5Gc replacement enhances the transferrin-assisted, iron loading-associated Aß cytotoxicity. Native gel electrophoresis and IM-MS reveal that sialylation stabilizes transferrin conformation but inhibits its dimerization. Collectively, IM-MS is adapted to capture key sialylation intermediates involved in fine-tuning AD-associated glycoprotein structural microheterogeneity. Our results provide the molecular basis for the importance of sustaining moderate TF sialylation levels, especially Neu5Ac, in promoting iron cellular transportation and rescuing iron-enhanced Aß cytotoxicity.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/metabolismo , Glicoproteínas/metabolismo , Humanos , Espectrometría de Masas/métodos , Ácidos Siálicos , Transferrina
17.
Methods Mol Biol ; 2437: 143-157, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34902146

RESUMEN

Small-molecule (e.g., metabolite) and low-abundance neuropeptide analyses by mass spectrometry (MS) represent important research directions and have witnessed tremendous growth and developments during past decades. With innate advantages of MS and gentle nature of soft ionization techniques including electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI), profiling and visualization of these bioactive metabolites and neuropeptides have undergone technological advancements that can be applied to real biological systems, although numerous challenges still exist. We herein present a rapid and efficient strategy to improve both metabolite and neuropeptide analysis, the nanosecond photochemical reaction (nsPCR)-enabled fast chemical derivatization. Amine-directed chemoselectivity facilitates the rapid tagging on amine-containing metabolites and neuropeptides, resulting in improved detection sensitivity. Additionally, the nsPCR generates a localized pH jump zone and enables localized thermophoresis at nanosecond timescale which benefits on-demand matrix removal during MALDI-MS identification and visualization of low-abundance biomolecules. A step-by-step nsPCR experimental protocol is introduced in detail herein for both spot analysis and imaging analysis, followed by suggestions for data analysis to ensure successful application of the nsPCR strategy.


Asunto(s)
Neuropéptidos/química , Aminas , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Tiempo
18.
Zhongguo Zhong Yao Za Zhi ; 46(16): 4238-4243, 2021 Aug.
Artículo en Chino | MEDLINE | ID: mdl-34467738

RESUMEN

Wuwei Ganlu, a formula for medicated bath, consists of medicinal materials of Ephedra sinica, Platycladus orientalis, Myricaria squamosa, Artemisia carvifolia, and Rhododendron anthopogonoides, which is effective in inducing perspiration, resisting inflammation, relieving pain, regulating yellow water disease, and activating blood circulation. On this basis, a variety of formulas for Tibetan medicated bath have been derived for the treatment of diseases in internal organs, joints, nerves, etc. Modern studies have confirmed that Wuwei Ganlu has a good therapeutic efficacy on knee osteoarthritis(KOA). The present study explored the mechanism of Wuwei Ganlu in treating KOA based on network pharmacology and molecular docking. Firstly, the chemical components of Wuwei Ganlu were obtained through literature mining and database retrieval, and corresponding potential targets were predicted according to the BATMAN-TCM database. The protein-protein interaction(PPI) network was obtained after the potential targets were input into the STRING database. The network function modules were analyzed by the Molecular Complex Detection(MCODE) algorithm, and the functions of the modules were annotated to analyze the action mode of Wuwei Ganlu. Secondly, the related targets of KOA were collected through the DisGeNET database, and the overlapping targets were confirmed to analyze the mechanism of Wuwei Ganlu in treating KOA. Finally, the key targets were selected for molecular docking with the main components of Wuwei Ganlu to verify the component-target interaction. A total of 550 chemical components and 1 365 potential targets of Wuwei Ganlu were obtained. PPI analysis indicated that this formula could exert the effects of oxidation-reduction, inflammation resistance, bone absorption, bone mineralization, etc. Nineteen common targets were obtained from the intersection of potential targets of Wuwei Ganlu and KOA disease targets. It was found that the Wuwei Ganlu mainly acts on nuclear factor-κB(NF-κB), interleukin-1 beta(IL1ß), tumor necrosis factor(TNF), IL6, IL1 receptor antagonist(IL1 RN), and prostaglandin-endoperoxide synthase-2(PTGS2) to treat KOA. Among the 550 chemical components of Wuwei Ganlu, 252 potential active components were docked with TNF and 163 with PTGS2, indicating good binding of the components with potential key targets. The study preliminarily explored the mechanism of Wuwei Ganlu in treating KOA to provide a reference for the further development and utilization of Tibetan medicated bath that has been included in the UN Intangible Cultural Heritage.


Asunto(s)
Medicamentos Herbarios Chinos , Osteoartritis de la Rodilla , Bases de Datos Factuales , Humanos , Inflamación , Simulación del Acoplamiento Molecular
19.
Pathol Oncol Res ; 27: 528050, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34257524

RESUMEN

Herein we present a previously unreported rare case of mucinous adenocarcinoma arising from a congenital ejaculatory duct cyst. Radiographic and endoscopic examinations revealed the tumor occurred in a cyst running through the prostate. Initially, the immunohistochemical pathology results showed that it was a metastatic mucinous adenocarcinoma, but no other primary lesions were clinically evidenced. Based on the embryonic development process of the male urogenital tract, the malformation of the patient's ejaculatory duct, and the pathological examination of the resected specimen, we considered the tumor to be a primary mucinous adenocarcinoma which originating from the hypoplastic ejaculatory duct. The tumor may have developed from the foci of intestinal metaplasia from cloacal remnants during embryonic development.


Asunto(s)
Adenocarcinoma Mucinoso/patología , Quistes/patología , Conductos Eyaculadores/patología , Neoplasias de los Genitales Masculinos/patología , Adenocarcinoma Mucinoso/diagnóstico , Anciano , Neoplasias de los Genitales Masculinos/diagnóstico , Humanos , Masculino
20.
J Am Soc Mass Spectrom ; 32(6): 1352-1360, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-33605729

RESUMEN

Crustacean hyperglycemic hormones (CHHs) are a family of neuropeptides that were discovered in multiple tissues in crustaceans, but the function of most isoforms remains unclear. Functional discovery often requires comprehensive qualitative profiling and quantitative analysis. The conventional enzymatic digestion method has several limitations, such as missing post-translational modification (PTM) information, homology interference, and incomplete sequence coverage. Herein, by using a targeted top-down method, facilitated by higher sensitivity instruments and hybrid fragmentation modes, we achieved the characterization of two CHH isoforms from the sinus glands (SG-CHH) and the pericardial organs (PO-CHH) from the Atlantic blue crab, Callinectes sapidus, with improved sequence coverage compared to earlier studies. In this study, both label-free and isotopic labeling approaches were adopted to monitor the response of CHHs and CHH precursor-related peptide (CPRP) under low pH stress. The identical trends of CPRP and CHH expression indicated that CPRP could serve as an ideal probe in tracking the CHH expression level changes, which would greatly simplify the quantitative analysis of large peptides. Furthermore, the distinct patterns of changes in the expression of CHHs in the SG and the PO suggested their tissue-specific functions in the regulation of low pH stress. Ion mobility-mass spectrometry (IM-MS) was also employed in this study to provide conformation analysis of both CHHs and CPRPs from different tissues.


Asunto(s)
Proteínas de Artrópodos/análisis , Braquiuros/química , Braquiuros/fisiología , Hormonas de Invertebrados/análisis , Espectrometría de Masas/métodos , Proteínas del Tejido Nervioso/análisis , Precursores de Proteínas/análisis , Animales , Proteínas de Artrópodos/química , Proteínas de Artrópodos/metabolismo , Concentración de Iones de Hidrógeno , Hormonas de Invertebrados/química , Hormonas de Invertebrados/metabolismo , Espectrometría de Movilidad Iónica , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Especificidad de Órganos , Péptidos/análisis , Péptidos/metabolismo , Isoformas de Proteínas/análisis , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Proteómica/métodos , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...