Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 896
Filtrar
1.
J Environ Sci (China) ; 147: 332-341, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003051

RESUMEN

Growing evidences showed that heavy metals exposure may be associated with metabolic diseases. Nevertheless, the mechanism underlying arsenic (As) exposure and metabolic syndrome (MetS) risk has not been fully elucidated. So we aimed to prospectively investigate the role of serum uric acid (SUA) on the association between blood As exposure and incident MetS. A sample of 1045 older participants in a community in China was analyzed. We determined As at baseline and SUA concentration at follow-up in the Yiwu Elderly Cohort. MetS events were defined according to the criteria of the International Diabetes Federation (IDF). Generalized linear model with log-binominal regression model was applied to estimate the association of As with incident MetS. To investigate the role of SUA in the association between As and MetS, a mediation analysis was conducted. In the fully adjusted log-binominal model, per interquartile range increment of As, the risk of MetS increased 1.25-fold. Compared with the lowest quartile of As, the adjusted relative risk (RR) of MetS in the highest quartile was 1.42 (95% confidence interval, CI: 1.03, 2.00). Additionally, blood As was positively associated with SUA, while SUA had significant association with MetS risk. Further mediation analysis demonstrated that the association of As and MetS risk was mediated by SUA, with the proportion of 15.7%. Our study found higher As was remarkably associated with the elevated risk of MetS in the Chinese older adults population. Mediation analysis indicated that SUA might be a mediator in the association between As exposure and MetS.


Asunto(s)
Arsénico , Exposición a Riesgos Ambientales , Síndrome Metabólico , Ácido Úrico , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Arsénico/sangre , Arsénico/toxicidad , China/epidemiología , Pueblos del Este de Asia , Exposición a Riesgos Ambientales/efectos adversos , Síndrome Metabólico/epidemiología , Síndrome Metabólico/inducido químicamente , Síndrome Metabólico/sangre , Ácido Úrico/sangre
2.
Bioresour Technol ; 409: 131192, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39094960

RESUMEN

This study explored a novel economical and efficient process for treating actual low-ammonia nitrogen electroplating tail wastewater. A pilot scale system of denitrification-partial nitrification/anaerobic ammonium oxidation (DN-PN/A) was constructed and operated for 190 days. The partial nitrification (PN) reactor, filled with zeolite, increased free ammonia concentration beyond the nitrite oxidizing bacteria threshold and successfully supplied NO2--N, with nitrite accumulation rate exceeding 90 %. Over 109 days, the total nitrogen removal rate achieved was 80.2 ± 7.41 %, and the chemical oxygen demand removal rate reached 79.68 ± 9.53 %. The dominant functional bacteria were Nitrosomonas (5.45 %) and Candidatus Anammoxoglobus (28.84 %) in PN reactor and anaerobic ammonium oxidation (Anammox) reactor. This process, characterized by rapid start-up, strong shock resistance, and low cost, alleviates the pressure of ammonium pollution control, promotes the sustainable development of the electroplating industry and has the potential for application in the treatment of other industrial wastewater.


Asunto(s)
Reactores Biológicos , Desnitrificación , Aguas Residuales , Purificación del Agua , Aguas Residuales/química , Purificación del Agua/métodos , Proyectos Piloto , Nitrificación , Galvanoplastia , Oxidación-Reducción , Nitrógeno , Compuestos de Amonio/metabolismo , Amoníaco/metabolismo , Anaerobiosis , Análisis de la Demanda Biológica de Oxígeno , Eliminación de Residuos Líquidos/métodos , Nitritos/metabolismo , Residuos Industriales
3.
Anal Chem ; 96(33): 13379-13388, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39105793

RESUMEN

Highly sensitive detection of low-frequency EGFR-L858R mutation is particularly important in guiding targeted therapy of nonsmall-cell lung carcinoma (NSCLC). To this end, a ligase chain reaction (LCR)-based electrochemical biosensor (e-LCR) with an inverted sandwich-type architecture was provided by combining a cooperation of lambda exonuclease-RecJf exonuclease (λ-RecJf exo). In this work, by designing a knife-like DNA substrate (an overhang ssDNA part referred to the "knife arm") and introducing the λ-RecJf exo, the unreacted DNA probes in the LCR were specially degraded while only the ligated products were preserved, after which the ligated knife-like DNA products were hybridized with capture probes on the gold electrode surface through the "knife arms", forming the inverted sandwich-type DNA structure and bringing the methylene blue-label close to the electrode surface to engender the electrical signal. Finally, the sensitivity of the e-LCR could be improved by 3 orders of magnitude with the help of the λ-RecJf exo, and due to the mutation recognizing in the ligation site of the employed ligase, this method could detect EGFR-L858R mutation down to 0.01%, along with a linear range of 1 fM-10 pM and a limit detection of 0.8 fM. Further, the developed method could distinguish between L858R positive and negative mutations in cultured cell samples, tumor tissue samples, and plasma samples, whose accuracy was verified by the droplet digital PCR, holding a huge potential in liquid biopsy for precisely guiding individualized-treatment of NSCLC patients with advantages of high sensitivity, low cost, and adaptability to point-of-care testing.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Técnicas Electroquímicas , Receptores ErbB , Exodesoxirribonucleasas , Neoplasias Pulmonares , Mutación , Receptores ErbB/genética , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/genética , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Técnicas Biosensibles , Reacción en Cadena de la Ligasa , Límite de Detección , Proteínas Virales
4.
Curr Genomics ; 25(3): 212-225, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-39086998

RESUMEN

Background: Chemically modified therapeutic mRNAs have gained momentum recently. In addition to commonly used modifications (e.g., pseudouridine), 5moU is considered a promising substitution for uridine in therapeutic mRNAs. Accurate identification of 5-methoxyuridine (5moU) would be crucial for the study and quality control of relevant in vitro-transcribed (IVT) mRNAs. However, current methods exhibit deficiencies in providing quantitative methodologies for detecting such modification. Utilizing the capabilities of Oxford nanopore direct RNA sequencing, in this study, we present NanoML-5moU, a machine-learning framework designed specifically for the read-level detection and quantification of 5moU modification for IVT data. Materials and Methods: Nanopore direct RNA sequencing data from both 5moU-modified and unmodified control samples were collected. Subsequently, a comprehensive analysis and modeling of signal event characteristics (mean, median current intensities, standard deviations, and dwell times) were performed. Furthermore, classical machine learning algorithms, notably the Support Vector Machine (SVM), Random Forest (RF), and XGBoost were employed to discern 5moU modifications within NNUNN (where N represents A, C, U, or G) 5-mers. Results: Notably, the signal event attributes pertaining to each constituent base of the NNUNN 5-mers, in conjunction with the utilization of the XGBoost algorithm, exhibited remarkable performance levels (with a maximum AUROC of 0.9567 in the "AGTTC" reference 5-mer dataset and a minimum AUROC of 0.8113 in the "TGTGC" reference 5-mer dataset). This accomplishment markedly exceeded the efficacy of the prevailing background error comparison model (ELIGOs AUC 0.751 for site-level prediction). The model's performance was further validated through a series of curated datasets, which featured customized modification ratios designed to emulate broader data patterns, demonstrating its general applicability in quality control of IVT mRNA vaccines. The NanoML-5moU framework is publicly available on GitHub (https://github.com/JiayiLi21/NanoML-5moU). Conclusion: NanoML-5moU enables accurate read-level profiling of 5moU modification with nanopore direct RNA-sequencing, which is a powerful tool specialized in unveiling signal patterns in in vitro-transcribed (IVT) mRNAs.

5.
Artículo en Inglés | MEDLINE | ID: mdl-39106136

RESUMEN

Neural Radiance Fields (NeRFs) have shown impressive capabilities in synthesizing photorealistic novel views. However, their application to room-size scenes is limited by the requirement of several hundred views with accurate poses for training. To address this challenge, we propose SN 2 eRF, a framework which can reconstruct the neural radiance field with significantly fewer views and noisy poses by exploiting multiple priors. Our key insight is to leverage both multi-view and monocular priors to constrain the optimization of NeRF in the setting of sparse and noisy pose inputs. Specifically, we extract and match key points to constrain pose optimization and use Ray Transformer with a monocular depth estimator to provide dense depth prior for geometry optimization. Benefiting from these priors, our approach achieves state-of-the-art accuracy in novel view synthesis for indoor room scenarios.

6.
Phys Chem Chem Phys ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39177483

RESUMEN

Porous liquids (PLs) are the combination of porous solid material and flowing liquid, which provides alternative options to solve difficulties in the development of porous solids. With the booming development of PLs since 2015, plenty of syntheses and applications have been reported with a specific focus on gas adsorption. Given the lack of a comprehensive review, this paper reviews the application of PLs in CO2 capture. To start with, ground-breaking case studies are reviewed to help understand the progress of PLs research. Then, as a major part of this paper, studies of PLs for CO2 capture are reviewed separately. Moreover, five basic properties of porous liquids, including stability, viscosity, selectivity, porosity, capacity, and the influencing factors are systemically reviewed respectively. Furthermore, gas storage and release mechanisms in PLs are briefly outlined, and potential processing methods of PLs used for CO2 capture are discussed.

7.
Int J Pharm ; 664: 124609, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39163928

RESUMEN

Magnesium stearate (MgSt) and lactose fines are often used as ternary components in carrier-based dry powder inhalers (DPIs) to improve fine particle fraction (FPF), but whether they act synergistically to improve aerosolization performance of DPI formulations is currently less studied. In addition, the applicability of utilizing powder rheological parameters to predict the FPF needs to be further verified. Thus, in this study, using fluticasone propionate (FP) as a model drug, effect of lactose fines addition in 0.5% MgSt containing DPI formulations on their powder and aerodynamic properties was explored. Influence of MgSt and fines mixing order on the DPIs performance was also investigated. The results showed that addition of lactose fines (1-10%) in 0.5% MgSt containing formulations could further improve flowability and enhance adhesion of the mixtures, and they could act synergistically to improve FPF. Moreover, the presence of 0.5% MgSt can greatly reduce the amount of lactose fines required to achieve the comparable FPF. The mixing order can affect distribution of MgSt on the carrier surface, with higher FPF noted when MgSt was mixed with carrier first, followed by lactose fines. A good linear relationship between powder rheological parameters such as basic flowability energy (BFE), Permeability and FPF was disclosed. In conclusion, in FP based DPIs, MgSt and lactose fines act synergistically to enhance FPF by tuning powder characteristics. Good flowability (27.39%) and strong adhesion (72.61%) contributed to the enhanced drug deposition in the lung.

8.
Acta Ortop Bras ; 32(3): e269705, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39119246

RESUMEN

Objective: Tibial plateau fractures are common intra-articular fractures that pose classification and treatment challenges for orthopedic surgeons. Objective: This study examines the value of 3D printing for classifying and planning surgery for complex tibial plateau fractures. Methods: We reviewed 54 complex tibial plateau fractures treated at our hospital from January 2017 to January 2019. Patients underwent preoperative spiral CT scans, with DICOM data processed using Mimics software. 3D printing technology created accurate 1:1 scale models of the fractures. These models helped subdivide the fractures into seven types based on the tibial plateau's geometric planes. Surgical approaches and simulated operations, including fracture reduction and plate placement, were planned using these models. Results: The 3D models accurately depicted the direction and extent of fracture displacement and plateau collapse. They facilitated the preoperative planning, allowing for precise reconstruction strategies and matching intraoperative details with the pre-printed models. Post-surgery, the anatomical structure of the tibial plateau was significantly improved in all 54 cases. Conclusion: 3D printing effectively aids in the classification and preoperative planning of complex tibial plateau fractures, enhancing surgical outcomes and anatomical restoration. Level of Evidence IV, Prospective Study.


Objetivo: As fraturas do planalto tibial são fraturas intra-articulares comuns de classificação e tratamento desafiadores aos cirurgiões ortopédicos. Objetivo: Este estudo investiga o uso de impressão 3D para classificar e planejar a cirurgia de fraturas complexas do planalto tibial. Métodos: 54 fraturas complexas do planalto tibial tratadas em nosso hospital de janeiro de 2017 a janeiro de 2019 foram revisadas. Os pacientes foram submetidos a tomografias computadorizadas em espiral pré-operatórias, com dados DICOM processados usando o software Mimics. A tecnologia de impressão 3D gerou modelos precisos em escala 1:1 das fraturas. Estes modelos ajudaram a subdividir as fraturas em sete tipos com base nos planos geométricos do planalto tibial. As abordagens cirúrgicas e as operações simuladas, incluindo a redução da fratura e a colocação de placa, foram planejadas utilizando estes modelos. Resultados: Os modelos 3D representaram com precisão a direção e a extensão da deslocação da fratura e do colapso do planalto. Os modelos facilitaram o planejamento pré-operatório, viabilizando estratégias de reconstrução precisas e a correspondência dos detalhes intraoperatórios com os modelos pré-impressos. Após a cirurgia, a estrutura anatômica do planalto tibial melhorou significativamente em todos os 54 casos. Conclusão: A impressão 3D ajuda na classificação e no planejamento pré-operatório de fraturas complexas do planalto tibial, melhorando os resultados cirúrgicos e a restauração anatômica. Nível de Evidência IV, Estudo Prospectivo.

10.
ACS Nano ; 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190833

RESUMEN

Near-infrared II (NIR-II) imaging and photothermal therapy hold tremendous potential in precision diagnosis and treatment within biological organisms. However, a significant challenge is the shortage of NIR-II fluorescent probes with both high photothermal conversion coefficient (PCE) and fluorescence quantum yield (ΦF). Herein, we address this issue by integrating a large conjugated electron-withdrawing core, multiple rotors, and multiple alkyl chains into a molecule to successfully generate a NIR-II agent 4THTPB with excellent PCE (87.6%) and high ΦF (3.2%). 4THTPB shows a maximum emission peak at 1058 nm, and the emission tail could extend to as long as 1700 nm. These characteristics make its nanoparticles (NPs) perform well in NIR-II high-resolution angiography, thereby allowing for precise diagnosis of thrombus through NIR-II imaging and enabling efficient photothermal thrombolysis. This work not only furnishes a NIR-II agent with excellent overall performance but also provides valuable guidance for the design of high-performance NIR-II agents.

11.
Water Res ; 265: 122314, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39190951

RESUMEN

The mainstream partial nitritation/anammox (PN/A) process represents a significant innovation in decarbonizing municipal wastewater treatment. However, its implementation is considerably hampered by the challenge of stable nitrite supply. In this study, a pilot-scale PN/A system receiving real sewage (20 m3) was operated at room temperature for nearly one year. Remarkable PN performance with relatively high nitrite accumulation ratio of 75.04 ± 10.05 % was obtained via in-situ free ammonia (FA) strategy. The ammonium concentration enriched in the zeolite increased significantly by 548.8 times compared to that in the aqueous phase by ion exchange. This substantial increase robustly inhibited nitrite-oxidizing bacteria (NOB), resulting in high relative abundance ratio of ammonia-oxidizing bacteria (AOB) to NOB of 37.93 ± 12.61 in the zeolite biofilm, compared to 10.22 ± 1.67 in suspended floc sludge. The significant differences in FA concentrations between zeolite biofilm and suspended floc sludge resulted in distinct spatial distribution disparities of AOB and NOB, which were central to achieving stable nitrite accumulation without complex multiple selective pressures. Consequently, compliant effluent with total nitrogen of 10.91 ± 4.23 mg N/L was achieved at 10.4-31.1 °C without external carbon source addition. The biocarriers in the anammox process played a key role in enhancing functional genes and electron flow, supporting anammox-dominated nitrogen removal. This study presents a flexible and adaptable strategy for mainstream nitrite shunting, highlighting its potential for large-scale implementation of mainstream anammox treatment.

12.
Toxicol Appl Pharmacol ; 491: 117069, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39142358

RESUMEN

Ganoderic acid T (GAT), a triterpenoid molecule of Ganoderma lucidum, exhibits anti-cancer activity; however, the underlying mechanisms remain unclear. Therefore, in this study, we aimed to investigate the anti-cancer molecular mechanisms of GAT and explore its therapeutic applications for cancer treatment. GAT exhibited potent anti-cancer activity in an ES-2 orthotopic ovarian cancer model in a humanized mouse model, leading to significant alterations in the tumor microenvironment (TME). Specifically, GAT reduced the proportion of α-SMA+ cells and enhanced the infiltration of tumor-infiltrating lymphocytes (TILs) in tumor tissues. After conducting proteomic analysis, it was revealed that GAT downregulates galectin-1 (Gal-1), a key molecule in the TME. This downregulation has been confirmed in multiple cancer cell lines and xenograft tumors. Molecular docking suggested a theoretical direct interaction between GAT and Gal-1. Further research revealed that GAT induces ubiquitination of Gal-1. Moreover, GAT significantly augmented the anti-cancer effects of paclitaxel, thereby increasing intratumoral drug concentrations and reducing tumor size. Combined with immunotherapy, GAT enhanced the tumor-suppressive effects of the anti-programmed death-ligand 1 antibody and increased the proportion of CD8+ cells in the EMT6 syngeneic mammary cancer model. In conclusion, GAT inhibited tumor growth, downregulated Gal-1, modulated the TME, and promoted chemotherapy and immunotherapy efficacy. Our findings highlight the potential of GAT as an effective therapeutic agent for cancer.

13.
Nat Commun ; 15(1): 6855, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39127751

RESUMEN

RNA interference (RNAi) is a powerful tool for sequence-specific gene knockdown in therapeutic and research applications. However, spatiotemporal control of RNAi is required to decrease nonspecific targeting, potential toxicity, and allow targeting of essential genes. Herein we describe a class of de-novo-designed RNA switches that enable sequence-specific regulation of RNAi in mammalian cells. Using cis-repressing RNA elements, we engineer RNA devices that only initiate microRNA biogenesis when binding with cognate trigger RNAs. We demonstrate that this conditional RNAi system, termed Orthogonal RNA Interference induced by Trigger RNA (ORIENTR), provides up to 14-fold increases in artificial miRNA biogenesis upon activation in orthogonal libraries. We show that integration of ORIENTR triggers with dCas13d enhances dynamic range to up to 31-fold. We further demonstrate that ORIENTR can be applied to detect endogenous RNA signals and to conditionally knockdown endogenous genes, thus enabling regulatory possibilities including cell-type-specific RNAi and rewiring of transcriptional networks via RNA profile.


Asunto(s)
MicroARNs , Interferencia de ARN , Activación Transcripcional , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Células HEK293 , Animales , Técnicas de Silenciamiento del Gen , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , ARN/metabolismo , ARN/genética
14.
Small ; : e2403800, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39163609

RESUMEN

Self-propelled nanomotors possess strong propulsion and penetration abilities, which can increase the efficiency of cellular uptake of nanoparticles and enhance their cytotoxicity against tumor cells, opening a new path for treating major diseases. In this study, the concept of driving nanomotors by alternately stretching and contracting a temperature-sensitive polymer (TS-P) chain is proposed. The TS-Ps are successfully linked to one side of Cu2-xSe@Au (CS@Au) nanoparticles to form a Janus structure, which is designated as Cu2-xSe@Au-polymer (CS@Au-P) nanomotors. Under near-infrared (NIR) light irradiation, Cu2-xSe nanoparticles generate photothermal effects that change the system temperature, triggering the alternation of the TS-P structure to generate a mechanical force that propels the motion of CS@Au-P nanomotors. The nanomotor significantly improved the cellular uptake of nanoparticles and enhanced their penetration and accumulation in tumor. Furthermore, the exceptional photothermal conversion efficiency of CS@Au-P nanomotors suggests their potential as nanomaterials for photothermal therapy (PTT). The prepared material exhibited good biocompatibility and anti-tumor effects both in vivo and in vitro, providing new research insights into the design and application of nanomotors in tumor therapy.

15.
Phytochemistry ; : 114246, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39163914

RESUMEN

Centella asiatica (L.) Urban is a medical plant rich in triterpenoids, frequently used in Asia to treat skin conditions such as acne. To search for anti-photoaging agents, 16 known triterpenoids and five undescribed triterpenoids, including three ursane, one oleanane and one nor-ursane were isolated from the whole herb of C. asiatica. The structures and relative stereochemistry of these compounds were elucidated by detailed NMR spectra and HRESIMS. Compounds 1 and 2 were isomers of ursane-type and oleane-type triterpenes with rare aldehyde groups on C-23. Compound 4 was a unique example of a nor-ursane type triterpenoid. The Ultraviolet B (UVB) induced HaCaT cell damage model was used to measure the in vitro anti-photoaging activity of all 21 compounds. Twenty compounds significantly increased HaCaT viability and inhibited lactate dehydrogenase (LDH) release after UVB exposure. These findings highlight the protective effects of C. asiatica-derived triterpenoids against UVB damage and indicate their potential as natural agents that can protect the skin against photoaging.

16.
Huan Jing Ke Xue ; 45(8): 4610-4618, 2024 Aug 08.
Artículo en Chino | MEDLINE | ID: mdl-39168680

RESUMEN

The microplastics in aquatic ecosystems pose a serious threat to ecological security and environmental health, which have received widespread attention. To reveal the response of a water-Vallisneria natans-sediment system to microplastics exposure, the V. natans was exposed to polyethylene microplastics (PE-MPs) with different mass fractions (1%-5%, sediment wet mass fraction), and the effects of PE-MPs on the physiochemical indicators of water quality, morphological characteristics of submerged plants, physiological characters, antioxidant system, and microbial community structure in sediments were studied respectively. The results showed that the physiochemical properties of the water body were not significantly changed in the PE-MPs treatment group, whereas the plant height, oxidative stress index, and antioxidant system were significantly inhibited. For the plant height, the 1% PE-MPs treatment group height was only 47.44% of that in the control group. Chlorophyll a content was 81.04% of that in the control group, and the activities of catalase (CAT), malondialdehyde (MDA), and peroxidase (POD) increased by 233.70%, 117.82%, and 61.62%, respectively. Different mass fractions of PE-MPs had a certain impact on microbial community structure in sediments. The above results are helpful to improve the evaluation system of PE-MPs ecological risk in the water-submerged plant-sediment system.


Asunto(s)
Sedimentos Geológicos , Microplásticos , Polietileno , Contaminantes Químicos del Agua , Contaminantes Químicos del Agua/análisis , Microplásticos/toxicidad , Sedimentos Geológicos/química , Hydrocharitaceae/crecimiento & desarrollo , Hydrocharitaceae/efectos de los fármacos , Ecosistema , Monitoreo del Ambiente
17.
Quant Imaging Med Surg ; 14(7): 4333-4347, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39022262

RESUMEN

Background: Dynamic surveillance of vasculature is essential for evaluating the healing of oral ulcer. Existing techniques used in vascular imaging face limitations, such as inadequate spatial resolution, restricted diagnostic depth, and the necessity of exogenous contrast agents. Therefore, this study aimed to use robust photoacoustic imaging (PAI) for the dynamic monitoring of vascular response during healing and the associated treatment process of oral ulcer. Methods: Kunming mice (male, 8 weeks old, 31-41 g) were treated with 50% acetic acid for 90 s on the tongue mucosa for induction of oral traumatic ulcer. Mice were randomly divided into three groups (n=12): the control, compound chamomile and lidocaine hydrochloride gel (CCLH), and phycocyanin (PC) groups. PAI was then conducted on days 0, 2, 3, 5, and 7 to obtain vessel parameters of the ulcer area, including vessel intensity, density, mean diameter, maximum diameter, and curvature. Immunohistochemical and hematoxylin and eosin (HE) staining were performed on days 3 and 7 to assess microvessel density and inflammation score. The ulcer healing rate and body weight changes were evaluated for clinical observation. Results: Beginning on the second day after ulcer induction, there was a progressive increase over time in blood intensity and vessel parameters, including vascular density and diameter. On day 7, the CCLH and PC groups demonstrated significantly higher measures than did the control group in terms of blood intensity (P<0.05 and P<0.01), vascular density (both P values <0.05), mean diameter (both P values <0.01), and maximum diameter (P<0.01 and P<0.05). Vessel curvature in the two treatment groups exhibited no significant differences compared to that in the control group (both P values >0.05). The effects of vascular morphological changes were further supported by the histological and clinical outcomes. On day 7, compared to that of the control group, the level of microvessel density was significantly higher in both the CCLH (P<0.01) and PC (P<0.05) groups. The histopathological score in PC group was significantly lower than that of the control group on day 7 (P<0.05). Additionally, compared to that of the control group, the healing rates of the CCLH (P<0.01) and PC groups (P<0.05) were superior on day 7. On day 3, the control group showed more weight loss than did the CCLH (P<0.05) and PC (P<0.01) groups. Conclusions: These findings indicate that PAI is a valuable strategy for the dynamic and quantitative analysis of vascular alterations in oral traumatic ulcers and support its prospective application in improving clinical treatment.

18.
Ann Med ; 56(1): 2373199, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38956857

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is one of the most common endocrine and metabolic disorders in women of reproductive age. It is frequently comorbid with obesity and negative emotions. Currently, there are few reports on the relationship between obesity and negative emotions in patients with PCOS. Here we performed both basic and clinical studies to study the relationship between obesity and negative emotions in PCOS. METHODS: We performed a cross-sectional study including 608 patients with PCOS and 184 healthy participants to assess the mental health status of people with different body mass indices (BMI). Self-rated anxiety, depression, and perceived stress scales were used for subjective mood evaluations. Rat PCOS models fed 45 and 60% high-fat diets were used to confirm the results of the clinical study. Elevated plus maze and open field tests were used to assess anxiety- and depression-like behaviors in rats. RESULTS: We observed overweight/obesity, increased depression, anxiety, and perceived stress in women with PCOS, and found that anxiety and depression were negatively correlated with BMI in patients with severe obesity and PCOS. Similar results were confirmed in the animal study; the elevated plus maze test and open field test demonstrated that only 60% of high fat diet-induced obesity partly reversed anxiety- and depression-like behaviors in PCOS rats. A high-fat diet also modulated rat hypothalamic and hippocampal luteinizing hormone and testosterone levels. CONCLUSION: These results reveal a potential relationship between obesity and negative emotions in PCOS and prompt further investigation. The interactions between various symptoms of PCOS may be targeted to improve the overall well-being of patients.


Obesity was negatively correlated with negative emotions in patients with PCOS.Obesity may affect the downregulation of LH and testosterone and participate in the regulation of emotions.Increased BMI may be beneficial for patients with PCOS in terms of the psychological aspects.


Asunto(s)
Ansiedad , Índice de Masa Corporal , Depresión , Dieta Alta en Grasa , Obesidad , Síndrome del Ovario Poliquístico , Síndrome del Ovario Poliquístico/psicología , Síndrome del Ovario Poliquístico/complicaciones , Femenino , Animales , Humanos , Obesidad/psicología , Ratas , Estudios Transversales , Adulto , Ansiedad/psicología , Ansiedad/etiología , Depresión/psicología , Depresión/etiología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Ratas Sprague-Dawley , Adulto Joven , Emociones , Estrés Psicológico/psicología
19.
AAPS J ; 26(4): 78, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38981948

RESUMEN

A soft-core oil-in-water (o/w) nanoemulsion (NE) is composed of nanometer (nm) sized oil droplets, stabilized by a surfactant layer and dispersed in a continuous bulky water phase. Characterization of the o/w NE molecule arrangements non-invasively, particularly the drug phase distribution (DPD) and its correlation to oil globule size (OGS), remains a challenge. Here we demonstrated the analytical methods of intact 19F Nuclear Magnetic Resonance (NMR) and 1H diffusion ordered spectroscopy (DOSY) NMR for their specificity in measuring DPD and OGS, respectively, on three NE formulations containing the active ingredient difluprednate (DFPN) at the same concentration. The results illustrated synchronized molecular rearrangement reflected in the DPD and OGS upon alterations in formulation. Addition of surfactant resulted in a higher DPD in the surfactant layer, and concomitantly smaller OGS. Mechanic perturbation converted most of the NE globules to the smaller thermodynamically stable microemulsion (ME) globules, changing both DPD and OGS to ME phase. These microstructure changes were not observed using 1D 1H NMR; and dynamic light scattering (DLS) was only sensitive to OGS of ME globule in mechanically perturbed formulation. Collectively, the study illustrated the specificity and essential role of intact NMR methods in measuring the critical microstructure attributes of soft-core NE systems quickly, accurately, and non-invasively. Therefore, the selected NMR approach can be a unique diagnostic tool of molecular microstructure or Q3 property in o/w NE formulation development, and quality assurance after manufacture process or excipient component changes.


Asunto(s)
Emulsiones , Espectroscopía de Resonancia Magnética , Aceites , Agua , Espectroscopía de Resonancia Magnética/métodos , Agua/química , Aceites/química , Tensoactivos/química , Fluprednisolona/química , Fluprednisolona/análogos & derivados , Tamaño de la Partícula , Composición de Medicamentos/métodos , Nanopartículas/química , Química Farmacéutica/métodos
20.
Int Immunopharmacol ; 139: 112783, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39068752

RESUMEN

BACKGROUND: This study performs a detailed bioinformatics and machine learning analysis to investigate the genetic foundations of membranous nephropathy (MN) in lung adenocarcinoma (LUAD). METHODS: In this study, the gene expression profiles of MN microarray datasets (GSE99339) and LUAD dataset (GSE43767) were downloaded from the Gene Expression Omnibus database, common differentially expressed genes (DEGs) were obtained using the limma R package. The biological functions were analyzed with R Cluster Profiler package according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. Machine learning algorithms, including LASSO regression, support vector machine (SVM), Random Forest, and Boruta analysis, were applied to identify hubgenes linked to LUAD-associated MN. These genes' prognostic values were evaluated in the TCGA-LUAD cohort and validated through immunohistochemistry on renal biopsy specimens. RESULTS: A total of 36 DEGs in common were identified for downstream analyses. Functional enrichment analysis highlighted the involvement of the Toll-like receptor 4 pathway and several immune recognition pathways in LUAD-associated MN. COL3A1, PSENEN, RACGAP1, and TNFRSF10B were identified as hub genes in LUAD-associated MN using machine learning algorithms. ROC analysis demonstrated their effective discrimination of MN with high accuracy. Survival analysis showed that lung adenocarcinoma patients with higher expression of these genes had significantly reduced overall survival. In patients with lung adenocarcinoma-associated MN, RACGAP1, COL3A1, PSENEN, and TNFRSF10B were higher expressed in the glomerular, especially RACGAP1, indicating an important role in the pathogenesis of LUAD-associated membranous nephropathy. CONCLUSIONS: Our study underscores the critical role of RACGAP1, COL3A1, PSENEN, and TNFRSF10B in the development of LUAD-associated MN, providing important insights for future research and the development of potential therapeutic strategies.


Asunto(s)
Adenocarcinoma del Pulmón , Biología Computacional , Glomerulonefritis Membranosa , Neoplasias Pulmonares , Aprendizaje Automático , Humanos , Glomerulonefritis Membranosa/genética , Glomerulonefritis Membranosa/inmunología , Adenocarcinoma del Pulmón/genética , Biología Computacional/métodos , Neoplasias Pulmonares/genética , Proteínas Activadoras de GTPasa/genética , Regulación Neoplásica de la Expresión Génica , Pronóstico , Masculino , Femenino , Perfilación de la Expresión Génica , Bases de Datos Genéticas , Persona de Mediana Edad , Colágeno Tipo III
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...