Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Acta Diabetol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954041

RESUMEN

BACKGROUND: This study investigates the therapeutic mechanisms of Cai's Herbal Tea in Type 1 Diabetes Mellitus (T1DM) mice, focusing on its effects on mitochondrial change and autophagy via the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) pathway. METHODS: The composition of Cai's Herbal Tea was analyzed by Ultra-High Performance Liquid Chromatography-Quadrupole Time of Flight Mass Spectrometry (UHPLC-Q/TOF-MS). C57BL/6 mice and Min6 pancreatic beta cells were divided into control, diabetic mellitus (DM)/high glucose (HG), and treatment groups (low, medium, and high doses of Cai's Tea, and Metformin). Key physiological parameters, pancreatic islet health, Min6 cell morphology, viability, and insulin (INS) secretion were assessed. Small Interfering RNA-AMPK (si-AMPK) was utilized to confirm the pathway involvement. RESULTS: Cai's Herbal Tea improved body weight, pancreatic islet pathological injury, and INS secretion whereas reduced total triglycerides, fasting blood sugar, and Interferon gamma (INF-γ) in T1DM mice, particularly at higher doses. In Min6 cells, Cai's Tea mitigated HG-induced damage and proinflammatory response, enhancing cell viability and INS secretion. Notably, it reduced swelling and improved cristae structure in treated groups of mitochondria and promoted autophagy via the AMPK-mTOR pathway, evidenced by increased LC3II/LC3I and P-AMPK/AMPK ratios, and decreased P-mTOR/mTOR and P62 expressions in pancreatic islet ß-cells. Furthermore, these effects were converted by si-AMPK interference. CONCLUSION: Cai's Herbal Tea exhibits significant therapeutic efficacy in T1DM mice by improving mitochondrial health and inducing autophagy through the AMPK-mTOR pathway in pancreatic islet ß-cells. These findings highlight its potential as a therapeutic approach for T1DM management.

2.
Cell Signal ; 121: 111273, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38950874

RESUMEN

Diabetes-associated periodontitis (DP) presents severe inflammation and resistance to periodontal conventional treatment, presenting a significant challenge in clinical management. In this study, we investigated the underlying mechanism driving the hyperinflammatory response in gingival epithelial cells (GECs) of DP patients. Our findings indicate that lysosomal dysfunction under high glucose conditions leads to the blockage of autophagy flux, exacerbating inflammatory response in GECs. Single-cell RNA sequencing and immunohistochemistry analyses of clinical gingival epithelia revealed dysregulation in the lysosome pathway characterized by reduced levels of lysosome-associated membrane glycoprotein 2 (LAMP2) and V-type proton ATPase 16 kDa proteolipid subunit c (ATP6V0C) in subjects with DP. In vitro stimulation of human gingival epithelial cells (HGECs) with a hyperglycemic microenvironment showed elevated release of proinflammatory cytokines, compromised lysosomal acidity and blocked autophagy. Moreover, HGECs with deficiency in ATP6V0C demonstrated impaired autophagy and heightened inflammatory response, mirroring the effects of high glucose stimulation. Proteomic analysis of acetylation modifications identified altered acetylation levels in 28 autophagy-lysosome pathway-related proteins and 37 sites in HGECs subjected to high glucose stimulation or siATP6V0C. Overall, our finding highlights the pivotal role of lysosome impairment in autophagy obstruction in DP and suggests a potential impact of altered acetylation of relevant proteins on the interplay between lysosome dysfunction and autophagy blockage. These insights may pave the way for the development of effective therapeutic strategies against DP.

3.
Sci Total Environ ; 946: 174503, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38971246

RESUMEN

Plant growth-promoting rhizobacteria (PGPR) play important roles in plant growth and defense under heavy metal (HM) stress. The direct integration of microbial and plant signals is key to the regulation of plant growth and HM stress defense, but the underlying mechanisms are still limited. Herein, we reveal a novel mechanism by which PGPR regulates plant growth-regulating substances in plant tissues and coordinates plant growth and defense in pak choi under cadmium (Cd) stress. This might be an efficient strategy and an extension of the mechanism by which plant-microbe interactions improve plant stress resistance. Azospirillum brasilense and heme synergistically reduced the shoot Cd content and promoted the growth of pak choi. The interaction between abscisic acid of microbial origin and heme improved Cd stress tolerance through enhancing Cd accumulation in the root cell wall. The interaction between A. brasilense and heme induced the growth-defense shift in plants under Cd stress. Plants sacrifice growth to enhance Cd stress defense, which then transforms into a dual promotion of both growth and defense. This study deepens our understanding of plant-microbe interactions and provides a novel strategy to improve plant growth and defense under HM stress, ensuring future food production and security.


Asunto(s)
Azospirillum brasilense , Cadmio , Hemo , Contaminantes del Suelo , Azospirillum brasilense/fisiología , Cadmio/toxicidad , Hemo/metabolismo , Contaminantes del Suelo/toxicidad , Desarrollo de la Planta/efectos de los fármacos , Raíces de Plantas/microbiología , Raíces de Plantas/crecimiento & desarrollo , Estrés Fisiológico
4.
Int J Biol Macromol ; 275(Pt 1): 133340, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925195

RESUMEN

As the traditional aerogel has defects such as poor mechanical properties, complicated preparation process, high energy consumption and non-renewable, wood aerogel as a new generation of aerogel shows unique advantages. With a natural cellulose framework, wood aerogel is a novel nano-porous material exhibiting exceptional properties such as light weight, high porosity, large specific surface area, and low thermal conductivity. Furthermore, its adaptability to further functionalization enables versatile applications across diverse fields. Driven by the imperative for sustainable development, wood aerogel as a renewable and eco-friendly material, has garnered significant attention from researchers. This review introduces preparation methods of wood aerogel based on the top-down strategy and analyzes the factors influencing their key properties intending to obtain wood aerogels with desirable properties. Avenues for realizing its functionality are also explored, and research progress across various domains are surveyed, including oil-water separation, conductivity and energy storage, as well as photothermal conversion. Finally, potential challenges associated with wood aerogel exploitation and utilization are addressed, alongside discussions on future prospects and research directions. The results emphasize the broad research value and future prospects of wood aerogels, which are poised to drive high-value utilization of wood and foster the development of green multifunctional aerogels.

5.
BMC Plant Biol ; 24(1): 518, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851683

RESUMEN

Plant polyploidization increases the complexity of epigenomes and transcriptional regulation, resulting in genome evolution and enhanced adaptability. However, few studies have been conducted on the relationship between gene expression and epigenetic modification in different plant tissues after allopolyploidization. In this study, we studied gene expression and DNA methylation modification patterns in four tissues (stems, leaves, flowers and siliques) of Brassica napusand its diploid progenitors. On this basis, the alternative splicing patterns and cis-trans regulation patterns of four tissues in B. napus and its diploid progenitors were also analyzed. It can be seen that the number of alternative splicing occurs in the B. napus is higher than that in the diploid progenitors, and the IR type increases the most during allopolyploidy. In addition, we studied the fate changes of duplicated genes after allopolyploidization in B. napus. We found that the fate of most duplicated genes is conserved, but the number of neofunctionalization and specialization is also large. The genetic fate of B. napus was classified according to five replication types (WGD, PD, DSD, TD, TRD). This study also analyzed generational transmission analysis of expression and DNA methylation patterns. Our study provides a reference for the fate differentiation of duplicated genes during allopolyploidization.


Asunto(s)
Brassica napus , Metilación de ADN , Regulación de la Expresión Génica de las Plantas , Poliploidía , Brassica napus/genética , Brassica napus/metabolismo , Genes Duplicados/genética , Genes de Plantas , Empalme Alternativo , Duplicación de Gen , Epigénesis Genética
6.
Plant J ; 119(2): 814-827, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38739690

RESUMEN

Several dwarf and semi-dwarf genes have been identified in barley. However, only a limited number have been effectively utilized in breeding programs to cultivate lodging resistant varieties. This is due to the common association of dwarf and semi-dwarf traits with negative effects on malt quality. In this study, we employed gene editing to generate three new haplotypes of sdw1/denso candidate gene gibberellin (GA) 20-oxidase2 (GA20ox2). These haplotypes induced a dwarfing phenotype and enhancing yield potential, and promoting seed dormancy, thereby reducing pre-harvest sprouting. Moreover, ß-amylase activity in the grains of the mutant lines was significantly increased, which is beneficial for malt quality. The haplotype analysis revealed significant genetic divergence of this gene during barley domestication and selection. A novel allele (sdw1.ZU9), containing a 96-bp fragment in the promoter region of HvGA20ox2, was discovered and primarily observed in East Asian and Russian barley varieties. The 96-bp fragment was associated with lower gene expression, leading to lower plant height but higher germination rate. In conclusion, HvGA20ox2 can be potentially used to develop semi-dwarf barley cultivars with high yield and improved malt quality.

7.
PLoS One ; 19(5): e0302216, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38781198

RESUMEN

The real-time monitoring on the risk status of the vehicle and its driver can provide the assistance for the early detection and blocking control of single-vehicle accidents. However, complex risk coupling relationship is one of the main features of single-vehicle accidents with high mortality rate. On the basis of investigating the coupling effect among multi-risk factors and establishing a safety management database throughout the life cycle of vehicles, single-vehicle driving risk network (SVDRN) with a three-level threshold was developed, and its topology features were analyzed to assessment the importance of nodes. To avoid the one-sidedness of single indicator, the multi-attribute comprehensive evaluation model was applied to measure the comprehensive effect of characteristic indicators for nodes importance. A algorithm for real-time monitoring of vehicle driving risk status was proposed to identify key risk chains. The result revealed that improper operation, speeding, loss of vehicle control and inefficient driver management were the sequence of top four risk factors in the comprehensive evaluation result of nodes importance (mean value = 0.185, SD = 0.119). There were minor differences of 0.017 in the node importance among environmental factors, among which non-standard road alignment had the larger value. The improper operation and non-standard road alignment were the highest combination correlation of factors affecting road safety, with the support of 51.81% and the confidence of 69.35%. This identification algorithm of key risk chains that combines node importance and its risk state threshold can effectively determine the high-frequency risk transmission paths and risk factors through multi-vehicle test, providing a basis for centralization management of transport enterprises.


Asunto(s)
Accidentes de Tránsito , Algoritmos , Accidentes de Tránsito/prevención & control , Accidentes de Tránsito/estadística & datos numéricos , Factores de Riesgo , Humanos , Conducción de Automóvil , Medición de Riesgo/métodos
8.
Int J Biol Macromol ; 268(Pt 2): 131936, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38692533

RESUMEN

With the increasing environmental and ecological problems caused by petroleum-based packaging materials, the focus has gradually shifted to natural resources for the preparation of functional food packaging materials. In addition to biodegradable properties, nanocellulose (NC) mechanical properties, and rich surface chemistry are also fascinating and desired to be one of the most probable green packaging materials. In this review, we firstly introduce the recent progress of novel applications of NC in food packaging, including intelligent packaging, nano(bio)sensors, and nano-paper; secondly, we focus on the modification techniques of NC to summarize the properties (antimicrobial, mechanical, hydrophobic, antioxidant, and so on) that are required for food packaging, to expand the new synthetic methods and application areas. After presenting all the latest advances related to material design and sustainable applications, an overview summarizing the safety of NC is presented to promote a continuous and healthy movement of NC toward the field of truly sustainable packaging.


Asunto(s)
Celulosa , Embalaje de Alimentos , Embalaje de Alimentos/métodos , Celulosa/química , Nanoestructuras/química , Antioxidantes/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Interacciones Hidrofóbicas e Hidrofílicas
9.
Inflammation ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755405

RESUMEN

Idiopathic inflammatory myopathies (IIM) are a group of myopathies that present with muscle weakness and multiple extra-muscular manifestations, in which lymphocytes play central roles in myositis pathogenesis. This study aimed to explore the clinical characteristics of lymphocyte subsets, especially B cell subsets, in patients with IIM. Our study included 176 patients with active IIM and 210 gender/age-matched healthy controls (HCs). Compared to HCs, patients have reduced counts of T cells, B cells, and natural killer cells. In addition, B cell subsets from 153 patients with IIM and 92 HCs were characterized. Patients had a lower percentage of memory B cells and translational memory B cells, while those patients were with an elevated percentage of CD19+ B cells, plasmablast and naïve B cells compared with HCs. Moreover, to further explore the heterogeneity of B cells in IIM, patients were categorized into three clusters based on clustering analysis. Cluster 1 was dominated by CD19+ B cells, Bregs and naïve B cells, cluster 3 was dominated by memory B cells and plasmablast, and cluster 2 had the highest proportion of translational memory B cells. Notably, patients in cluster 1 presented with higher CK levels, indicating muscle damage, whereas patients in cluster 3 showed a higher incidence of chest tightness. Our study indicated that lymphopenia is a common manifestation in patients with IIM. B cell subsets are abnormally expressed and showed high heterogeneity in patients with IIM. The patients with IIM were divided into three different clusters with different percentages of chest tightness and distinct CK levels.

10.
Int J Biol Macromol ; 270(Pt 1): 132206, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735610

RESUMEN

The isochorismate synthase (ICS) proteins are essential regulators of salicylic acid (SA) synthesis, which has been reported to regulate resistance to biotic and abiotic stresses in plants. Clubroot caused by Plasmodiophora brassicae is a common disease that threatens the yield and quality of Oilseed rape (Brassica napus L.). Exogenous application of salicylic acid reduced the incidence of clubroot in oilseed rape. However, the potential importance of the ICS genes family in B. napus and its diploid progenitors has been unclear. Here, we identified 16, 9, and 10 ICS genes in the allotetraploid B. napus, diploid ancestor Brassica rapa and Brassica oleracea, respectively. These ICS genes were classified into three subfamilies (I-III), and member of the same subfamilies showed relatively conserved gene structures, motifs, and protein domains. Furthermore, many hormone-response and stress-related promoter cis-acting elements were observed in the BnaICS genes. Exogenous application of SA delayed the growth of clubroot galls, and the expression of BnaICS genes was significantly different compared to the control groups. Protein-protein interaction analysis identified 58 proteins involved in the regulation of ICS in response to P. brassicae in B. napus. These results provide new clues for understanding the resistance mechanism to P. brassicae.


Asunto(s)
Brassica napus , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Plasmodiophorida , Brassica napus/parasitología , Brassica napus/genética , Resistencia a la Enfermedad/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Familia de Multigenes , Ácido Salicílico/farmacología , Ácido Salicílico/metabolismo , Genoma de Planta , Transferasas Intramoleculares
11.
Int Dent J ; 74(4): 823-835, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38685137

RESUMEN

PURPOSE: To explore the mechanism underlying autophagy disruption in gingival epithelial cells (GECs) in diabetic individuals. METHODS AND MATERIALS: Bone marrow-derived macrophages (BMDMs) and GECs were extracted from C57/bl and db/db mice, the exosomes (Exo) were isolated from BMDMs. qRT‒PCR and Western blotting were performed to analyse gene expression. The AnimalTFDB database was used to identify relevant transcription factors, and miRNA sequencing was utilised to identify relevant miRNAs with the aid of the TargetScan/miRDB/miRWalk databases. A dual-luciferase assay was conducted to verify intermolecular targeting relationships. RESULTS: Similar to BMDMs, BMDM-derived Exos disrupted autophagy and exerted proinflammatory effects in GEC cocultures, and ATG7 may play a vital role. AnimalTFDB database analysis and dual-luciferase assays indicated that NR5A2 is the most relevant transcription factor that regulates Atg7 expression. SiRNA-NR5A2 transfection blocked autophagy in GECs and exacerbated inflammation, whereas NR5A2 upregulation restored ATG7 expression and ameliorated ExoDM-mediated inflammation. MiRNA sequencing, with TargetScan/miRDB/miRWalk analyses and dual-luciferase assays, confirmed that miR-381-3p is the most relevant miRNA that targets NR5A2. MiR-381-3p mimic transfection blocked autophagy in GECs and exacerbated inflammation, while miR-381-3p inhibitor transfection restored ATG7 expression and attenuated ExoDM-mediated inflammation. CONCLUSION: BMDM-derived Exos, which carry miR-381-3p, inhibit NR5A2 and disrupt autophagy in GECs, increasing periodontal inflammation in diabetes.


Asunto(s)
Autofagia , Células Epiteliales , Exosomas , Encía , Macrófagos , Ratones Endogámicos C57BL , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Autofagia/genética , Animales , Células Epiteliales/metabolismo , Exosomas/metabolismo , Macrófagos/metabolismo , Ratones , Encía/citología , Encía/metabolismo , Proteína 7 Relacionada con la Autofagia/genética , Proteína 7 Relacionada con la Autofagia/metabolismo , Masculino
12.
Aging Cell ; 23(7): e14159, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38556842

RESUMEN

Previous research on sleep and aging largely has failed to illustrate the optimal dose-response curve of this relationship. We aimed to analyze the associations between sleep duration and measures of predicted age. In total, 241,713 participants from the UK Biobank were included. Habitual sleep duration was collected from the baseline questionnaire. Four indicators, homeostatic dysregulation (HD), phenoAge (PA), Klemera-Doubal method (KDM), and allostatic load (AL), were chosen to assess predicted age. Multivariate linear regression models were utilized. The association of sleep duration and predicted age followed a U-shape (All p for nonlinear <0.05). Compared with individuals who sleep for 7 h/day, the multivariable-adjusted beta of ≤5 and ≥9 h/day were 0.05 (95% CI 0.03, 0.07) and 0.03 (95% CI 0.02, 0.05) for HD, 0.08 (95% CI 0.01, 0.14) and 0.36 (95% CI 0.31, 0.41) for PA, and 0.21 (95% CI 0.12, 0.30) and 0.30 (95% CI 0.23, 0.37) for KDM. Significant independent and joint effects of sleep and cystatin C (CysC) and gamma glutamyltransferase (GGT) on predicted age metrics were future found. Similar results were observed when conducting stratification analyses. Short and long sleep duration were associated with accelerated predicted age metrics mediated by CysC and GGT.


Asunto(s)
Envejecimiento , Bancos de Muestras Biológicas , Sueño , Humanos , Reino Unido , Sueño/fisiología , Envejecimiento/fisiología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Duración del Sueño , Biobanco del Reino Unido
13.
Angew Chem Int Ed Engl ; 63(25): e202403015, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38623043

RESUMEN

Ternary organic solar cells (T-OSCs) represent an efficient strategy for enhancing the performance of OSCs. Presently, the majority of high-performance T-OSCs incorporates well-established Y-acceptors or donor polymers as the third component. In this study, a novel class of conjugated small molecules has been introduced as the third component, demonstrating exceptional photovoltaic performance in T-OSCs. This innovative molecule comprises ethylenedioxythiophene (EDOT) bridge and 3-ethylrhodanine as the end group, with the EDOT unit facilitating the creation of multiple conformation locks. Consequently, the EDOT-based molecule exhibits two-dimensional charge transport, distinguishing it from the thiophene-bridged small molecule, which displays fewer conformation locks and provides one-dimensional charge transport. Furthermore, the robust electron-donating nature of EDOT imparts the small molecule with cascade energy levels relative to the electron donor and acceptor. As a result, OSCs incorporating the EDOT-based small molecule as the third component demonstrate enhanced mobilities, yielding a remarkable efficiency of 19.3 %, surpassing the efficiency of 18.7 % observed for OSCs incorporating thiophene-based small molecule as the third component. The investigations in this study underscore the excellence of EDOT as a building block for constructing conjugated materials with multiple conformation locks and high charge carrier mobilities, thereby contributing to elevated photovoltaic performance in OSCs.

14.
Br J Ophthalmol ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503477

RESUMEN

AIMS: To report the 1-year results of the efficacy of a defocus distributed multipoint (DDM) lens in controlling myopia progression in a multicentre, randomised controlled trial. METHODS: Overall, 168 children aged 6-13 years were recruited and randomly assigned to wear a DDM lens (n=84) or single-vision (SV) lens (n=84) in three centres. Cycloplegic autorefraction (spherical equivalent refraction (SER)) and axial length (AL) were measured. Linear mixed model analysis was performed to compare between-group SER and AL changes. Logistic regression analysis was used to analyse the between-group difference in rapid myopia progression (SER increase≥0.75 D per year or AL growth≥0.40 mm per year). RESULTS: After 1 year, mean changes in SER were significantly lower in the DDM group (-0.47±0.37 D) than in the SV group (-0.71±0.42 D) (p<0.001). Similarly, mean changes in AL were significantly lower in the DDM group (0.21±0.17 mm) than in the SV group (0.34±0.16 mm) (p<0.001). After adjusting for age, sex, daily wearing time and parental myopia, rapid myopia progression risk was higher in the SV group than in the DDM group (OR=3.51, 95% CI: 1.77 to 6.99), especially for children who wore a lens for >12 hours per day, boys and younger children (6-9 years) with ORs (95% CIs) of 10.82 (3.22 to 36.37), 5.34 (1.93 to 14.78) and 8.73 (2.6 to 29.33), respectively. CONCLUSIONS: After 1 year, DDM lenses effectively retarded myopia progression in children. Longer daily wearing time of DDM lens improved the efficacy of myopia control. Future long-term studies are needed for validation. TRIAL REGISTRATION NUMBER: NCT05340699.

15.
BMC Plant Biol ; 24(1): 211, 2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38519917

RESUMEN

Persian walnut (Juglans regia) and Manchurian walnut (Juglans mandshurica) belong to Juglandaceae, which are vulnerable, temperate deciduous perennial trees with high economical, ecological, and industrial values. 4-Coumarate: CoA ligase (4CL) plays an essential function in plant development, growth, and stress. Walnut production is challenged by diverse stresses, such as salinity, drought, and diseases. However, the characteristics and expression levels of 4CL gene family in Juglans species resistance and under salt stress are unknown. Here, we identified 36 Jr4CL genes and 31 Jm4CL genes, respectively. Based on phylogenetic relationship analysis, all 4CL genes were divided into three branches. WGD was the major duplication mode for 4CLs in two Juglans species. The phylogenic and collinearity analyses showed that the 4CLs were relatively conserved during evolution, but the gene structures varied widely. 4CLs promoter region contained multiply cis-acting elements related to phytohormones and stress responses. We found that Jr4CLs may be participated in the regulation of resistance to anthracnose. The expression level and some physiological of 4CLs were changed significantly after salt treatment. According to qRT-PCR results, positive regulation was found to be the main mode of regulation of 4CL genes after salt stress. Overall, J. mandshurica outperformed J. regia. Therefore, J. mandshurica can be used as a walnut rootstock to improve salt tolerance. Our results provide new understanding the potential functions of 4CL genes in stress tolerance, offer the theoretical genetic basis of walnut varieties adapted to salt stress, and provide an important reference for breeding cultivated walnuts for stress tolerance.


Asunto(s)
Juglans , Juglans/genética , Ligasas/genética , Filogenia , Fitomejoramiento , Estrés Salino/genética
16.
Adv Mater ; 36(19): e2312805, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38319917

RESUMEN

Incorporating flexible insulating polymers is a straightforward strategy to enhance the mechanical properties of rigid conjugated polymers, enabling their use in flexible electronic devices. However, maintaining electronic characteristics simultaneously is challenging due to the poor miscibility between insulating polymers and conjugated polymers. This study introduces the carboxylation of insulating polymers as an effective strategy to enhance miscibility with conjugated polymers via surface energy modulation and hydrogen bonding. The carboxylated elastomer, synthesized via a thiol-ene click reaction, closely matches the surface energy of the conjugated polymer. This significantly improves the mechanical properties, achieving a high crack-onset strain of 21.48%, surpassing that (5.93%) of the unmodified elastomer:conjugated polymer blend. Upon incorporating the carboxylated elastomer into PM6:L8-BO-based organic solar cells, an impressive power conversion efficiency of 19.04% is attained, which top-performs among insulating polymer-incorporated devices and outperforms devices with unmodified elastomer or neat PM6:L8-BO. The superior efficiency is attributed to the optimized microstructures and enhanced crystallinity for efficient and balanced charge transport, and suppressed charge recombination. Furthermore, flexible devices with 5% carboxylated elastomer exhibit superior mechanical stability, retaining ≈88.9% of the initial efficiency after 40 000 bending cycles at a 1 mm radius, surpassing ≈83.5% for devices with 5% unmodified elastomer.

17.
Hortic Res ; 11(1): uhad249, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38288255

RESUMEN

Vacuole largely dictates the fruit taste and flavor, as most of the sugars and organic acids are stored in the vacuoles of the fruit. However, difficulties associated with vacuole separation severely hinder identification and characterization of vacuolar proteins in fruit species. In this study, we established an effective approach for separating vacuoles and successfully purified vacuolar protein from six types of citrus fruit with varying patterns of sugar and organic acid contents. By using label-free LC-MS/MS proteomic analysis, 1443 core proteins were found to be associated with the essential functions of vacuole in citrus fruit. Correlation analysis of metabolite concentration with proteomic data revealed a transporter system for the accumulation of organic acid and soluble sugars in citrus. Furthermore, we characterized the physiological roles of selected key tonoplast transporters, ABCG15, Dict2.1, TMT2, and STP7 in the accumulation of citric acid and sugars. These findings provide a novel perspective and practical solution for investigating the transporters underlying the formation of citrus taste and flavor.

18.
Heliyon ; 10(1): e23534, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38173522

RESUMEN

Background: Dexmedetomidine is known to prolong the analgesic duration of spinal anesthesia, but it can be challenging to achieve further extension without opioids. Therefore, this study aimed to investigate a novel analgesic strategy using dexmedetomidine as an adjuvant to spinal-epidural anesthesia for elective cesarean surgery. Methods: The study was a randomized, double-blind, controlled trial conducted at a single center. Sixty parturients who underwent elective cesarean were randomly assigned to either group C or group D. Group D received an intrathecal injection of 12.5 mg ropivacaine and 5 µg dexmedetomidine followed by continuous epidural patient-controlled analgesia (PCA) infusion with a total volume of 100 ml, containing 0.2 % ropivacaine and 0.5 µg/kg dexmedetomidine. Group C received an intrathecal injection of 12.5 mg ropivacaine with an equivalent saline placebo followed by a similar PCA infusion, containing 0.2 % ropivacaine and an equivalent saline placebo. Results: The primary outcome was visual analog scale score on movement at 24 h after surgery. The results showed that the rest and motion pain scores in group D were significantly lower than those in group C at 6 h, 12 h, and 24 h after surgery (P < 0.05), with the differences at 24 h were 5.0 (5.0, 5.0)in group D versus 5.0 (5.0, 6.0) in group C (P = 0.04). Additionally, the time to the first PCA in group D was significantly longer than that in group C (P < 0.05), as well as the time of sensory and motor recovery. Conclusions: Whole-course application of dexmedetomidine as an adjuvant to spinal-epidural anesthesia could effectively extend the analgesic duration of ropivacaine to 24 h following elective cesarean surgery.

19.
BMC Plant Biol ; 24(1): 72, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38267871

RESUMEN

Melatonin plays important roles in multiple stress responses; however, the downstream signaling pathway and molecular mechanism remain unclear. This study aimed to elucidate the transcriptional regulation of melatonin-induced salt stress tolerance in Phaseolus vulgaris L. and identify the key downstream transcription factors of melatonin through transcriptomic and metabolomic analyses. The melatonin-induced transcriptional network of hormones, transcription factors, and functional genes was established under both control and stress conditions. Among these, eight candidate transcription factors were identified via gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, one gene related to transmembrane transport of salts (Phvul.004G177300). These genes may play a role in maintaining the cell structure and excreting sodium ions outside the cell or transporting them to the vacuoles for storage. Melatonin regulates the Phvul.009G210332 gene and metabolites C05642 (N-acetyl-N-2-formyl-5-methoxycanurine), C05643 (6-hydroxymelatonin), C05660 (5-methoxyindoleacetic acid) involved in tryptophan metabolism. The metabolites C05642 and C05643 were identified as decomposition products of tryptophan, indicating that exogenous melatonin entered the P. vulgaris tissue and was metabolized. Melatonin promotes the synthesis and metabolism of tryptophan, which is crucial to plant metabolism, growth, maintenance, and repair.


Asunto(s)
Melatonina , Phaseolus , Phaseolus/genética , Triptófano , Perfilación de la Expresión Génica , Estrés Salino , Factores de Transcripción
20.
Theor Appl Genet ; 137(1): 14, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38165440

RESUMEN

KEY MESSAGE: HvBGlu3, a ß-glucosidase enzyme gene, negatively influences ß-glucan content in barley grains by mediating starch and sucrose metabolism in developing grains. Barley grains are rich in ß-glucan, an important factor affecting end-use quality. Previously, we identified several stable marker-trait associations (MTAs) and novel candidate genes associated with ß-glucan content in barley grains using GWAS (Genome Wide Association Study) analysis. The gene HORVU3Hr1G096910, encoding ß-glucosidase 3, named HvBGlu3, is found to be associated with ß-glucan content in barley grains. In this study, conserved domain analysis suggested that HvBGlu3 belongs to glycoside hydrolase family 1 (GH1). Gene knockout assay revealed that HvBGlu3 negatively influenced ß-glucan content in barley grains. Transcriptome analysis of developing grains of hvbglu3 mutant and the wild type indicated that the knockout of the gene led to the increased expression level of genes involved in starch and sucrose metabolism. Glucose metabolism analysis showed that the contents of many sugars in developing grains were significantly changed in hvbglu3 mutants. In conclusion, HvBGlu3 modulates ß-glucan content in barley grains by mediating starch and sucrose metabolism in developing grains. The obtained results may be useful for breeders to breed elite barley cultivars for food use by screening barley lines with loss of function of HvBGlu3 in barley breeding.


Asunto(s)
Hordeum , beta-Glucanos , beta-Glucosidasa/genética , Hordeum/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Almidón , Sacarosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...