Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(18): 5543-5549, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38652819

RESUMEN

It is technically challenging to quantitatively apply strains to tune catalysis because most heterogeneous catalysts are nanoparticles, and lattice strains can only be applied indirectly via core-shell structures or crystal defects. Herein, we report quantitative relations between macroscopic strains and hydrogen evolution reaction (HER) activities of dealloyed nanoporous gold (NPG) by directly applying macroscopic strains upon bulk NPG. It was found that macroscopic compressive strains lead to a decrease, while macroscopic tensile strains improve the HER activity of NPG, which is in line with the d-band center model. The overpotential and onset potential of HER display approximately a linear relation with applied macroscopic strains, revealing an ∼2.9 meV decrease of the binding energy per 0.1% lattice strains from compressive to tensile. The methodology with the high strain sensitivity of electrocatalysis, developed in this study, paves a new way to investigate the insights of strain-dependent electrocatalysis with high precision.

2.
Sci Bull (Beijing) ; 68(11): 1119-1126, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37193612

RESUMEN

An experiment of 12C(16O,16O → 4α)12C was performed at a beam energy of 96 MeV. A large number of 4-α events were recorded in coincidence and with full particle identification (PID). This was made possible by employing a series of silicon-strip-based telescopes that provided excellent position and energy resolutions. Four narrow resonances just above the 15.1 MeV state were firmly identified in the α + 12C(7.65 MeV; Hoyle state) decay channel. Combined with the theoretical predictions, these resonant states provide new evidence for the predicted possible Hoyle-like structure in 16O above the 4-α separation threshold. Some very high-lying 4-α resonant states have also been observed and need to be further investigated.


Asunto(s)
Registros , Telescopios , Silicio , Vibración
3.
Nat Commun ; 13(1): 6645, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333307

RESUMEN

Coordination polymers (CPs) are a class of crystalline solids that are considered brittle, due to the dominance of directional coordination bonding, which limits their utility in flexible electronics and wearable devices. Hence, engineering plasticity into functional CPs is of great importance. Here, we report plastic bending of a semiconducting CP crystal, Cu-Trz (Trz = 1,2,3-triazolate), that originates from delamination facilitated by the discrete bonding interactions along different crystallographic directions in the lattice. The coexistence of strong coordination bonds and weak supramolecular interactions, together with the unique molecular packing, are the structural features that enable the mechanical flexibility and anisotropic response. The spatially resolved analysis of short-range molecular forces reveals that the strong coordination bonds, and the adaptive C-H···π and Cu···Cu interactions, synergistically lead to the delamination of the local structures and consequently the associated mechanical bending. The proposed delamination mechanism offers a versatile tool for designing the plasticity of CPs and other molecular crystals.

4.
Small ; 17(22): e2006021, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33719203

RESUMEN

Managing elastic properties of ABX3 type molecular perovskite ferroelectrics is critical to their future applications since these parameters determine their service durability and reliability in devices. The abundant structural and chemical viability of these compounds offer a convenient way to manipulate their elastic properties through a facile chemical approach. Here, the elastic properties and high-pressure behaviors of two isostructural perovskite ferroelectrics, MDABCO-NH4 I3 and MDABCO-KI3 (MDABCO = N-methyl-N'-diazabicyclo[2.2.2]octonium) is systematically investigated, via the first principles calculations and high-pressure synchrotron X-ray diffraction experiments. It is show that the simple replacement of NH4 + by K+ on the B-site respectively results in up to 48.1%, 52.4%, and 56.3% higher Young's moduli, shear moduli and bulk moduli, which is attributed to the much stronger KI coordination bonding than NH4 …I hydrogen bonding. These findings demonstrate that it is possible to tune elastic properties of molecular perovskite ferroelectrics via simply varying the framework assembling interactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...