Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 12(6): 3795-3802, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-31994570

RESUMEN

As a new family of two-dimensional materials, MXenes have attracted increasing attention in recent years due to their widespread potential applications. In contrast to early transition metals in convention, here we expand the M element of MXene to the rare earth element lutetium. Based on the first-principles density functional calculations, the bare lutetium-based carbide MXene Lu2C is determined to be stabilized in the T-type configuration. Furthermore, both fluorine and hydroxyl terminated configurations are found to be semiconductors, and their band gaps are suitable for use in semiconductors and visible and near-infrared optical devices. The Lu2C(OH)2 configuration shows a direct band gap and possesses an ultralow work function of 1.4 eV. Both Lu2CT2 (T = F, OH) MXenes exhibit high carrier mobilities. Particularly, the electron mobility of the Lu2C(OH)2 MXene is found to be anisotropic at room temperature, with values as high as 95.19 × 103 and 217.1 × 103 cm2 V-1·s-1 in the zigzag and armchair directions, respectively, which makes Lu2C(OH)2 a promising material for nanodevices. Based on these predicted properties, our work widens the range of MXene materials and their applications in semiconducting devices.

2.
Adv Mater ; 29(16)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28218442

RESUMEN

Currently, the limitations of conventional methods for fabricating metamaterials composed of well-aligned nanoscale inclusions either lack the necessary freedom to tune the structural geometry or are difficult for large-area synthesis. In this Communication, the authors propose a fabrication route to create well-ordered silver nano forest/ceramic composite single-layer or multi-layer vertically stacked structures, as a distinctive approach to make large-area nanoscale metamaterials. To take advantage of direct growth, the authors fabricate single-layer nanocomposite films with a well-defined sub-5 nm interwire gap and an average nanowire diameter of ≈3 nm. Further, artificially constructed multilayer metamaterial films are easily fabricated by vertical integration of different single-layer metamaterial films. Based upon the thermodynamics as well as thin film growth dynamics theory, the growth mechanism is presented to elucidate the formation of such structure. Intriguing steady and transient optical properties in these assemblies are demonstrated, owing to their nanoscale structural anisotropy. The studies suggest that the self-organized nanocomposites provide an extensible material platform to manipulate optical response in the region of sub-5 nm scale.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...