Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 13(1): 136, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849359

RESUMEN

Efficient charge-carrier injection and transport in organic light-emitting devices (OLEDs) are essential to simultaneously achieving their high efficiency and long-term stability. However, the charge-transporting layers (CTLs) deposited by various vapor or solution processes are usually in amorphous forms, and their low charge-carrier mobilities, defect-induced high trap densities and inhomogeneous thickness with rough surface morphologies have been obstacles towards high-performance devices. Here, organic single-crystalline (SC) films were employed as the hole-transporting layers (HTLs) instead of the conventional amorphous films to fabricate highly efficient and stable OLEDs. The high-mobility and ultrasmooth morphology of the SC-HTLs facilitate superior interfacial characteristics of both HTL/electrode and HTL/emissive layer interfaces, resulting in a high Haacke's figure of merit (FoM) of the ultrathin top electrode and low series-resistance joule-heat loss ratio of the SC-OLEDs. Moreover, the thick and compact SC-HTL can function as a barrier layer against moisture and oxygen permeation. As a result, the SC-OLEDs show much improved efficiency and stability compared to the OLEDs based on amorphous or polycrystalline HTLs, suggesting a new strategy to developing advanced OLEDs with high efficiency and high stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...