Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
1.
J Phys Chem Lett ; 15(39): 9968-9973, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39359145

RESUMEN

Realizing the anomalous valley Hall (AVH) effect in two-dimensional (2D) materials is of crucial importance for information processing and recording technology. While the research in this field mainly focuses on ferromagnetic systems, little is known about antiferromagnetic systems. Here, using k·p model analysis, we report a novel mechanism of realizing the AVH effect in 2D antiferromagnetic materials. This physics is related to the PT symmetry breaking induced by intrinsic staggered sublattice potential, which is introduced by asymmetric magnetic ions located at different sublattices. With reversal of the magnetic orientation on different sublattices, the AVH effect can be reversed. Based on first-principles calculations, we further demonstrate this mechanism in an antiferromagnetic monolayer of NiRuCl6. Intriguingly, due to the d orbital mismatch near the Fermi level, monolayer NiRuCl6 simultaneously owns zero net magnetization and large spin splitting and valley polarizations, which facilitates the observation of the AVH effect. Our findings greatly enrich the research on valley physics in antiferromagnetic systems.

2.
Nat Cell Biol ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354132

RESUMEN

Biomolecular condensates, such as the nucleolus, stress granules/processing bodies and germ granules, are multiphase assemblages whose formation mechanisms and significance remain poorly understood. Here we identify protein constituents of the spatiotemporally ordered P, Z and M multiphase condensates in Caenorhabditis elegans germ granules using optimized TurboID-mediated proximity biotin labelling. These include 462, 41 and 86 proteins localizing to P, Z and M condensates, respectively, of which 522 were previously unknown protein constituents. Each condensate's proteins are enriched for distinct classes of structured and intrinsically disordered domains, suggesting divergent functions and assembly mechanisms. Through a functional screen, we identify a germ granule protein, HERD-1, which prevents the mixing of P, Z and M condensates. Mixing in herd-1 mutants correlates with disorganization of germline small RNA pathways and prolonged epigenetic inheritance of RNA interference-induced gene silencing. Forced mixing of these condensate components using a nanobody with specific binding activity against green fluorescent protein also extends epigenetic inheritance. We propose that active maintenance of germ granule immiscibility helps to organize and regulate small RNA-driven transgenerational epigenetic inheritance in C. elegans.

3.
Dalton Trans ; 53(37): 15608-15617, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39233653

RESUMEN

With an electron-deficient rigid planar structure and excellent π-π stacking ability, hexaazatriphenylene (HAT) and its derivatives are widely used as basic building blocks for constructing covalent organic frameworks (COFs), components of organic light-emitting diodes and solar cells, and electrode materials for lithium-ion batteries (LIBs). Here, a HAT derivative, hexaazatriphenylenehexacarbonitrile, is explored as an anode material for LIBs. The HAT anode exhibited high initial reversible capacities of 672 mA h g-1 at 100 mA g-1 and 550 mA h g-1 at 400 mA g-1 and stable cycling with a capacity of 503 mA h g-1 after 1000 cycles at 400 mA g-1 corresponding to a capacity retention of 91.5%. Furthermore, the lithium storage mechanism and the cause of the first irreversible capacity loss of the HAT anode were investigated by X-ray photoelectron spectroscopy (XPS) analysis and density functional theory (DFT) calculations. We have carried out a series of analyses on the mechanism of initial capacity loss. This study provides new insight on initial capacity loss and provides valuable insights into the molecular design and the electrochemical properties of HAT-based anode materials.

4.
BMC Psychiatry ; 24(1): 625, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39334068

RESUMEN

BACKGROUND: Socioeconomic status (SES) is associated with both depression and activities of daily living (ADL and IADL). However, the role of ADL as a biological mechanism in the relationship between SES and late-life depression, examined through longitudinal data, remains understudied. This study explored the longitudinal mediation effects of basic ADL or IADL on the SES-depression link in older adults. METHODS: Data from the China Health and Retirement Longitudinal Study (N = 4104) were utilized. Mediation analysis was performed using parallel process latent growth curve modeling. RESULTS: The average age of participants was 57.76 years, and 55.7% being females. Significant linear growth over time was observed in ADL, IADL, and depression. Adjusting for covariates, SES was positively linked to the initial levels (intercepts) of ADL (ßiADL=-0.100[-0.143, -0.057]), IADL (ßiIADL=-0.140[-0.185, -0.095]), and depression (ßiDEP=-0.103[-0.158, -0.048]). However, SES showed no significant correlation with the rate of change (slopes) in ADL, IADL, or depression (P > 0.05). The intercepts of ADL (ßiDEP = 0.566[0.503, 0.629]) and IADL (ßiDEP = 0.607[0.544, 0.670]) were positively correlated with the depression intercept but negatively with the depression slope. Conversely, the slopes of ADL and IADL were positively associated with the depression slope. These results suggest a negative indirect relationship between SES and the initial level of depression, but a positive indirect relationship with the rate of increase in depression through ADL (or IADL) intercept. CONCLUSIONS: Higher SES is associated with a lower initial risk of depression and ADL difficulties. However, this same higher SES may relate to a faster increase in ADL difficulties and depression among middle-aged and older adults. The findings underscore the need for increased governmental healthcare funding and improved healthcare accessibility. Additionally, maintaining adequate sleep and physical activity can help prevent disability and reduce depression risk later in life, particularly among older adults with lower SES.


Asunto(s)
Actividades Cotidianas , Depresión , Clase Social , Humanos , Actividades Cotidianas/psicología , Femenino , Masculino , Estudios Longitudinales , Persona de Mediana Edad , Depresión/psicología , China/epidemiología , Anciano , Análisis de Mediación
5.
Front Chem ; 12: 1416942, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39268005

RESUMEN

Cipangopaludina chinensis is a common freshwater mollusk that is widely distributed worldwide, especially in China. In our research, 1,382 proteins and 1,039 phosphorylated proteins were identified from C. chinensis carcasses, and 690 differentially expressed proteins (DEPs) were quantified. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the DEPs are involved in cellular processes, single-organism processes, metabolic processes, developmental processes, localization, and biological regulation. The phosphorylated proteins were found to be related to the Rap1 signaling pathway, Ras signaling pathway, calcium signaling pathway, and longevity-regulating pathways. Moreover, we also identified important regulatory enzymes, such as guanylate cyclase, tyrosine protein kinase, receptor protein tyrosine kinase, and glyoxylate reductase/hydroxypyruvate reductase. Notably, we found guanylate cyclase to be present in multiple signaling pathways, including the Rap1 signaling pathway, calcium signaling pathway, Ras signaling pathway, insulin secretion, longevity regulating pathway, glutamatergic synapse, circadian entrainment, and gap junction. This enzyme may play a crucial role in regulating molecular mechanisms in C. chinensis. In summary, proteomic and phosphoproteomic analyses of C. chinensis carcasses displayed significant differences among different geographical isolates, which helps enhance our understanding of food nutrition, signaling pathways, and metabolic mechanisms in C. chinensis.

6.
Plant Sci ; 349: 112268, 2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39313004

RESUMEN

Clubroot has become a major obstacle in rapeseed production. Breeding varieties resistant to clubroot is the most effective method for disease management. However, the clubroot-resistant germplasm of rapeseed remains limited. To tackle this challenge, we synthesized the clubroot-resistant mustard, CT19, via distant hybridization, and subsequently an F2 segregating population was created by intercrossing CT19 with a clubroot-susceptible germplasm CS15. A major-effect clubroot resistance QTL qCRa3-1 on chromosome A03 was identified through QTL scanning. Transcriptome analyses of CT19 and CS15 revealed that the mechanisms conferring resistance to Plasmodiophora brassica likely involved the regulation of flavonoid metabolism, fatty acid metabolism, and sulfur metabolism. By combining the results from transcriptome, QTL mapping, and gene sequencing, a candidate gene BjuA03.BNT1, encoding NLR (nucleotide-binding domain leucine-rich repeat-containing receptors) protein, was obtained. Intriguingly, comparing with CT19, a base T insertion was discovered in the BjuA03.BNT1 gene's coding sequence in CS15, resulting an alteration within the LRR conserved domain. Overexpression of BjuA03.BNT1 from CT19 notably enhanced the resistance to clubroot in Arabidopsis. Our investigations revealed that BjuA03.BNT1 regulated the resistance to clubroot by modulating fatty acid synthesis and the structure of cell wall. These results are highly relevant for molecular breeding to improve clubroot resistance in rapeseed.

7.
Rev Sci Instrum ; 95(9)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39324765

RESUMEN

In the production process of high-end PP-R pipes, mixing different colored raw material particles can result in uneven color in the final product, affecting its appearance quality. in addition, color mixing can reduce the physical properties of the pipes, impacting their durability and safety. To address this issue, we propose a visual, non-destructive inspection solution based on image processing technology. The solution aims to enhance detection efficiency and accuracy by reducing background interference and enabling adaptive adjustments in various environments. Initially, the K-Means image segmentation algorithm is employed to eliminate complex background factors from the original image, significantly improving image segmentation accuracy. Subsequently, the Gaussian mixture model algorithm is utilized to automatically extract the color threshold of the foreground image after background removal, facilitating adaptive algorithm adjustments. Finally, the mean value algorithm is introduced to swiftly and accurately identify plastic particles of different colors using the automatically obtained color thresholds. Experimental results demonstrate that this method can quickly and accurately identify different color particles and effectively support the rejection of impurity particles. Through this approach, the algorithm achieves an average detection accuracy of 99.3%.

8.
Bioorg Chem ; 153: 107764, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39232344

RESUMEN

Chemotherapy drug efflux, toxic side effects, and low efficacy against drug-resistant cells have plagued safe and efficient cancer theranostics. However, the materials or methods that resolve these defects all-in-one are scarce. Here, a new cancer theranostics strategy is proposed by utilizing changes in lysosomal acidity in cancer cells to activate the membranolytic model to overcome these obstacles together. Therefore, a simple fluorescent anthracene derivative Lyso-Mito is developed, which has a perfect pKa (4.62) value that falls between the pH of lysosomes in cancer and normal cells. Lyso-Mito itself can precisely target and convert the pH perturbation of lysosomes in cancer cells to fluorescent response and membranolytic module activity to accomplish the low drug efflux, weak toxic side effects, and low drug-resistant cancer diagnosis and treatment without linking other functional units or any additional assistance. Hereby, a new cancer theranostics strategy of integrating organelle microenvironment and the membranolytic model is realized.

9.
Front Pharmacol ; 15: 1417951, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086389

RESUMEN

Introduction: Eplerenone is approved for the treatment of hypertension as well as symptomatic heart failure with reduced ejection fraction (HFrEF) following an acute myocardial infarction. However, the adverse events (AEs) have not been systematically analyzed. The aim of this study was to identify adverse drug reactions (ADRs) related to eplerenone using the FDA Adverse Event Reporting System (FAERS) database. By identifying previously unreported AEs, the study could potentially contribute to updating the drug's label. Methods: In order to find significant AEs, four algorithms, including Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN) and Empirical Bayesian Geometric Mean (EBGM), were used to analyze the signal strength of the ADRs connected to eplerenone that were gathered from the FAERS database over the previous 20 years. Results: From 2004Q1 to 2023Q4, a total of 20, 629, 811 reported cases were gathered from the FAERS database for this study. After processing the data and filtering, 1,874 case reports were analyzed. Of these cases, 1,070 AEs were identified, 128 of which were eplerenone-related ADRs. We investigated the occurrence of ADRs induced by eplerenone in 27 organ systems. Our study showed that the AEs listed in the medication's package insert correspond with those listed in the literature, including hyperkalemia and increased creatinine. Additionally, the prescription label for eplerenone does not include all system organ class (SOC) terms, like Vascular disorders, hepatobiliary Disorders, etc. Discussion: The study used multiple algorithms to quantify the signal strength and then identified any previously unrecognized ADRs, further studies are needed to confirm the association of ADRs with eplerenone. The findings of this study may provide important insights into the safety profile of eplerenone, ensure that healthcare providers have up-to-date information about their potential risks and help guide them in the correct use of the drug.

10.
Mater Horiz ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145397

RESUMEN

Skyrmion-bimeron switching is one of the most important phenomena in topological magnetism. Currently, it is usually realized by the annoying spin orientation vertical-reversal through magnetic field. Based on first-principles calculations and atomic spin simulations, we alternatively unveil that the switching between magnetic skyrmions and bimerons can be achieved in topological magnetic monolayer CrSeBr by external strain. The core mechanism of this switching is traced to the controllable magnetic anisotropy of monolayer CrSeBr influenced by the strain-engineered low-energy states around the Fermi level. We also introduce a parameter |κ| as a criterion for judging the stability of magnetic skyrmions and bimerons, which can be adopted as a useful descriptor linking the presence of skyrmion-bimeron switching driven by strain. The underlying physics is discussed in detail. The predicted strain controlled skyrmion-bimeron switching may be interesting for topological magnetic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA