Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecol Lett ; 27(7): e14469, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38990962

RESUMEN

The decline in global plant diversity has raised concerns about its implications for carbon fixation and global greenhouse gas emissions (GGE), including carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4). Therefore, we conducted a comprehensive meta-analysis of 2103 paired observations, examining GGE, soil organic carbon (SOC) and plant carbon in plant mixtures and monocultures. Our findings indicate that plant mixtures decrease soil N2O emissions by 21.4% compared to monocultures. No significant differences occurred between mixtures and monocultures for soil CO2 emissions, CH4 emissions or CH4 uptake. Plant mixtures exhibit higher SOC and plant carbon storage than monocultures. After 10 years of vegetation development, a 40% reduction in species richness decreases SOC content and plant carbon storage by 12.3% and 58.7% respectively. These findings offer insights into the intricate connections between plant diversity, soil and plant carbon storage and GGE-a critical but previously unexamined aspect of biodiversity-ecosystem functioning.


Asunto(s)
Biodiversidad , Carbono , Gases de Efecto Invernadero , Plantas , Suelo , Suelo/química , Gases de Efecto Invernadero/análisis , Carbono/metabolismo , Carbono/análisis , Plantas/metabolismo , Óxido Nitroso/análisis , Óxido Nitroso/metabolismo , Ecosistema , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Metano/metabolismo , Efecto Invernadero
2.
Plants (Basel) ; 12(5)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36904026

RESUMEN

The rac-GR24, an artificial analog of strigolactone, is known for its roles in inhibiting branches, and previous studies have reported that it has a certain mechanism to relieve abiotic stress, but the underlying metabolic mechanisms of mitigation for drought-induced remain unclear. Therefore, the objectives of this study were to identify associated metabolic pathways that are regulated by rac-GR24 in alfalfa (Medicago sativa L.) and to determine the metabolic mechanisms of rac-GR24 that are involved in drought-induced root exudate. The alfalfa seedling WL-712 was treated with 5% PEG to simulate drought, and rac-GR24 at a concentration of 0.1 µM was sprayed. After three days of treatment, root secretions within 24 h were collected. Osmotic adjustment substances and antioxidant enzyme activities were measured as physiological indicators, while LS/MS was performed to identify metabolites regulated by rac-GR24 of root exudate under drought. The results demonstrated that rac-GR24 treatment could alleviate the negative effects from drought-induced on alfalfa root, as manifested by increased osmotic adjustment substance content, cell membrane stability, and antioxidant enzyme activities. Among the 14 differential metabolites, five metabolites were uniquely downregulated in plants in rac-GR24 treatment. In addition, rac-GR24 could relieve drought-induced adverse effects on alfalfa through metabolic reprogramming in the pathways of the TCA cycle, pentose phosphate, tyrosine metabolism, and the purine pathway. This study indicated that rac-GR24 could improve the drought resistance of alfalfa by influencing the components of root exudates.

3.
Ecol Evol ; 12(6): e8973, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35784019

RESUMEN

Leaf anatomy varies with abiotic factors and is an important trait for understanding plant adaptive responses to environmental conditions. Leaf mass per area (LMA) is a key morphological trait and is related to leaf performance, such as light-saturated photosynthetic rate per leaf mass, leaf mechanical strength, and leaf lifespan. LMA is the multiplicative product of leaf thickness (LT) and leaf density (LD), both of which vary with leaf anatomy. Nevertheless, how LMA, LT, and LD covary with leaf anatomy is largely unexplored along natural environmental gradients. Slope aspect is a topographic factor that underlies variations in solar irradiation, air temperature, humidity, and soil fertility. In the present study, we examined (1) how leaf anatomy varies with different slope aspects and (2) how leaf anatomy is related to LMA, LD, and LT. Leaf anatomy was measured for 30 herbaceous species across three slope aspects (south-, west-, and north-facing slopes; hereafter, SFS, WFS, and NFS, respectively) in an eastern Tibetan subalpine meadow. For 18 of the 30 species, LMA data were available from previous studies. LD was calculated as LMA divided by LT. Among the slope aspects, the dominant species on the SFS exhibited the highest LTs with the thickest spongy mesophyll layers. The thicker spongy mesophyll layer was related to a lower LD via larger intercellular airspaces. In contrast, LD was the highest on NFS among the slope aspects. LMA was not significantly different among the slope aspects because higher LTs on SFS were effectively offset by lower LDs. These results suggest that the relationships between leaf anatomy and LMA were different among the slope aspects. Mechanisms underlying the variations in leaf anatomy may include different solar radiation, air temperatures, soil water, and nutrient availabilities among the slope aspects.

4.
Ecol Evol ; 11(20): 14042-14055, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34707838

RESUMEN

The composition of vegetation on a slope frequently changes substantially owing to the different micro-environments of various slope aspects. To understand how the slope aspect affects the vegetation changes, we examined the variations in leaf mass per area (LMA) and leaf size (LS) within and among populations for 66 species from 14 plots with a variety of slope aspects in a subalpine meadow. LMA is a leaf economic trait that is tightly correlated with plant physiological traits, while the LS shows a tight correlation with leaf temperature, indicating the strategy of plants to self-adjust in different thermal and hydraulic conditions. In this study, we compared the two leaf traits between slope aspects and between functional types and explored their correlation with soil variables and heat load. Our results showed that high-LMA, small-leaved species were favored in south-facing slopes, while the reverse was true in north-facing areas. In detail, small dense-leaved graminoids dominated the south slopes, while large thin-leaved forbs dominated the north slopes. Soil moisture and the availability of soil P were the two most important soil factors that related to both LMA and LS, and heat load also contributed substantially. Moreover, we disentangled the relative importance of intraspecific trait variation and species turnover in the trait variation among plots and found that the intraspecific variation contributed 98% and 56% to LMA and LS variation among communities, respectively, implying a large contribution of intraspecific trait plasticity. These results indicate that LMA and LS are two essential leaf traits that affect the adaptation or acclimation of plants underlying the vegetation composition changes in different slope aspects in the subalpine meadow.

5.
New Phytol ; 230(4): 1354-1365, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33629360

RESUMEN

Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die-back in eucalypt forests. The role of hydraulic failure and tree size on canopy die-back in three eucalypt tree species during this drought was examined. We measured pre-dawn and midday leaf water potential (Ψleaf ), per cent loss of stem hydraulic conductivity and quantified hydraulic vulnerability to drought-induced xylem embolism. Tree size and tree health was also surveyed. Trees with most, or all, of their foliage dead exhibited high rates of native embolism (78-100%). This is in contrast to trees with partial canopy die-back (30-70% canopy die-back: 72-78% native embolism), or relatively healthy trees (little evidence of canopy die-back: 25-31% native embolism). Midday Ψleaf was significantly more negative in trees exhibiting partial canopy die-back (-2.7 to -6.3 MPa), compared with relatively healthy trees (-2.1 to -4.5 MPa). In two of the species the majority of individuals showing complete canopy die-back were in the small size classes. Our results indicate that hydraulic failure is strongly associated with canopy die-back during drought in eucalypt forests. Our study provides valuable field data to help constrain models predicting mortality risk.


Asunto(s)
Sequías , Árboles , Australia , Bosques , Hojas de la Planta , Agua , Xilema
6.
Can J Microbiol ; 65(5): 365-376, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30566369

RESUMEN

Intact Tibetan meadows provide significant defense against soil-borne pathogen dispersal. However, dramatic meadow degradation has been observed due to climate change and pika damage, but their impacts on soil-borne pathogens are still unclear. With approximately 40% of the world's population living in Tibetan Plateau and its downstream watersheds, this lack of knowledge should be of great concern. Here, we used Illumina amplicon sequencing to characterize the changes in potential human, domestic animal, plant, and zoonotic bacterial and fungal pathogens in nondegraded, desertified, and pika-burrowed meadows. The relative abundance of bacterial domestic animal pathogens and zoonotic pathogens were significantly increased by desertification. Pika burrowing significantly increased the relative abundance of bacterial human pathogens and zoonotic pathogens. The species richness and relative abundance of fungal pathogens was significantly increased by desertification and pika burrowing. Accordingly, fungal plant and animal pathogens categorized by FUNGuid significantly increased in desertified and pika-burrowed meadows. Soil chemical and plant properties explained 38% and 64% of the bacterial and fungal pathogen community variance, respectively. Therefore, our study indicates for the first time that both alpine meadow desertification and pika burrowing could potentially increase infectious disease risks in the alpine ecosystem, especially for fungal diseases.


Asunto(s)
Enfermedades Transmisibles/microbiología , Hongos , Pradera , Lagomorpha/microbiología , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Microbiología del Suelo , Animales , Cambio Climático , Ecosistema , Humanos , Medición de Riesgo , Suelo/química , Tibet , Tundra
7.
Sci China Life Sci ; 61(7): 849-859, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29372510

RESUMEN

Warming increases competition among plant species in alpine communities by ameliorating harsh environmental conditions, such as low temperatures. Grazing, as the main human activity, may mitigate the effect of warming, as previously reported. However, it is critical to refine the effects of warming on biotic interactions among species, for example, by taking the competitive ability of species into consideration. Based on a 10-year warming and grazing experiment in a Tibetan alpine meadow, we evaluated interspecific biotic interactions of dominant and subordinate species, using the approach of interspecific spatial associations. Warming significantly increased competition between subordinate and dominant species as well as among subordinate species, but not among dominant species. Moreover, facilitation of dominant-subordinate species also increased under warming. Simulated rotational grazing had similar effects to warming, with increasing interspecific competition. Our results show that, when studying the effects of warming on biotic interactions among species, it is necessary to characterize different species pairs relative to their competitive ability, and that simulated rotational grazing does not mitigate the effects of warming in the long term. Our results also provide evidence that the spatial pattern of species is a critical mechanism in species coexistence.


Asunto(s)
Biota , Conducta Alimentaria/fisiología , Pradera , Calor , Plantas , Animales , Biodiversidad , Humanos , Plantas/clasificación , Plantas/genética , Análisis Espacial , Tibet
8.
Nat Commun ; 7: 12489, 2016 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-27535205

RESUMEN

Organisms' life cycles consist of hierarchical stages, from a single phenological stage (for example, flowering within a season), to vegetative and reproductive phases, to the total lifespan of the individual. Yet phenological events are typically studied in isolation, limiting our understanding of life history responses to climate change. Here, we reciprocally transfer plant communities along an elevation gradient to investigate plastic changes in the duration of sequential phenological events for six alpine species. We show that prolonged flowering leads to longer reproductive phases and activity periods when plants are moved to warmer locations. In contrast, shorter post-fruiting leaf and flowering stages led to shorter vegetative and reproductive phases, respectively, which resulted in shorter activity periods when plants were moved to cooler conditions. Therefore, phenological responses to warming and cooling do not simply mirror one another in the opposite direction, and low temperature may limit reproductive allocation in the alpine region.


Asunto(s)
Frío , Ecosistema , Pradera , Calor , Reproducción
9.
FEMS Microbiol Ecol ; 92(1)2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26635411

RESUMEN

Warming and grazing significantly affect the structure and function of an alpine meadow ecosystem. Yet, the responses of soil microbes to these disturbances are not well understood. Controlled asymmetrical warming (+1.2/1.7°C during daytime/nighttime) with grazing experiments were conducted to study microbial response to warming, grazing and their interactions. Significant interactive effects of warming and grazing were observed on soil bacterial α-diversity and composition. Warming only caused significant increase in bacterial α-diversity under no-grazing conditions. Grazing induced no substantial differences in bacterial α-diversity and composition irrespective of warming. Warming, regardless of grazing, caused a significant increase in soil bacterial community similarity across space, but grazing only induced significant increases under no-warming conditions. The positive effects of warming on bacterial α-diversity and grazing on community similarity were weakened by grazing and warming, respectively. Soil and plant variables explained well the variations in microbial communities, indicating that changes in soil and plant properties may primarily regulate soil microbial responses to warming in this alpine meadow. The results suggest that bacterial communities may become more similar across space in a future, warmed climate and moderate grazing may potentially offset, at least partially, the effects of global warming on the soil microbial diversity.


Asunto(s)
Calentamiento Global , Pradera , Microbiota , Microbiología del Suelo , Animales , Biodiversidad , Herbivoria , Calor , Plantas/microbiología , Ovinos , Suelo/química , Tibet
10.
ScientificWorldJournal ; 2015: 806983, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25688378

RESUMEN

Soft sets have been regarded as a useful mathematical tool to deal with uncertainty. In recent years, many scholars have shown an intense interest in soft sets and extended standard soft sets to intuitionistic fuzzy soft sets, interval-valued fuzzy soft sets, and generalized fuzzy soft sets. In this paper, hesitant fuzzy soft sets are defined by combining fuzzy soft sets with hesitant fuzzy sets. And some operations on hesitant fuzzy soft sets based on Archimedean t-norm and Archimedean t-conorm are defined. Besides, four aggregation operations, such as the HFSWA, HFSWG, GHFSWA, and GHFSWG operators, are given. Based on these operators, a multicriteria group decision making approach with hesitant fuzzy soft sets is also proposed. To demonstrate its accuracy and applicability, this approach is finally employed to calculate a numerical example.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...