Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 19(3): 773-781, 2018 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-29328653

RESUMEN

Nanoparticles based on the heavy chain of the human ferritin (HFn) are arousing growing interest in the field of drug delivery due to their exceptional characteristics. However, the unsatisfied plasma half life of HFn substantially limits its application as a delivery platform for antitumor agents. Herein we fused an albumin binding domain (ABD) variant that basically derives from the streptococcal protein G and possesses a long-acting characteristic in serum albumin to the N-terminus of the HFn for the aim of half-life extension. This ABD-HFn construct was highly expressed and fully self-assembled into symmetrical and spherical structure in E. coli bacteria. The purified ABD-HFn showed a similar particle size with wild-type HFn and also exhibited an extremely high binding affinity with human serum albumin. To evaluate the therapeutic potential of this ABD-HFn construct in terms of half-life extension, we encapsulated a model antitumor agent doxorubicin (DOX) into the ABD-HFn. Significantly outstanding loading efficacy of above 60 molecules doxorubicin for each ABD-HFn cage was achieved. The doxorubicin-loaded ABD-HFn nanoparticle was characterized and further compared with the recombinant HFn counterpart. The ABD-HFn/DOX nanoparticle showed dramatically improved stability and comparable cell uptake rate when compared with HFn/DOX counterpart. Pharmacokinetics study in Sprague-Dawley rats showed that ABD-HFn/DOX nanoparticle possessed significantly prolonged plasma half life of ∼17.2 h, exhibiting nearly 19 times longer than that of free doxorubicin and 12 times for HFn/DOX. These optimal results indicated that fusion with ABD will be a promising strategy to extend the half life for protein-based nanoparticles.


Asunto(s)
Doxorrubicina , Portadores de Fármacos , Ferritinas , Proteínas Recombinantes de Fusión , Albúmina Sérica Humana , Células A549 , Animales , Doxorrubicina/química , Doxorrubicina/farmacocinética , Doxorrubicina/farmacología , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacología , Ferritinas/química , Ferritinas/farmacocinética , Ferritinas/farmacología , Semivida , Humanos , Dominios Proteicos , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/farmacocinética , Proteínas Recombinantes de Fusión/farmacología , Albúmina Sérica Humana/química , Albúmina Sérica Humana/farmacocinética , Albúmina Sérica Humana/farmacología
2.
Bioconjug Chem ; 28(11): 2841-2848, 2017 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-29053917

RESUMEN

In this paper, we reported a novel strategy for the site-specific attachment of polyethylene glycol (PEGylation) of proteins using elevated hydrostatic pressure. The process was similar to the conventional one except the reactor was under elevated hydrostatic pressure. The model protein was recombinant human ciliary neurotrophic factor (rhCNTF), and the reagent was monomethoxy-polyethylene glycol-maleimide (mPEG-MAL). PEGylation with mPEG (40 kDa)-MAL at pH 7.0 under normal pressure for 5 h achieved a less than 5% yield. In comparison, when the pressure was elevated, the PEGylation yield was increased dramatically, reaching nearly 90% at 250 MPa. Furthermore, the following phenomena were observed: (1) high-hydrostatic-pressure PEGylation (HHPP) could operate at a low reactant ratio of 1:1.2 (rhCNTF to mPEG-MAL), while the conventional process needs a much-higher ratio. (2) Short and long chains of PEG gave a similar yield of 90% in HHPP, while the conventional yield for the short chain of the PEG was higher than that of the long chain. (3) The reaction pH in the range of 7.0 to 8.0 had almost no influence upon the yield of HHPP, while the PEGylation yield was significantly increased by a factor of three from pH 7.0 to 8.0 at normal pressure. Surface accessibility analysis was performed using GRASP2 software, and we found that Cys17 of rhCNTF was located at the concave patches, which may have steric hindrance for the PEG to approach. The speculated benefit of HHPP was the facilitation of target-site exposure, reducing the steric hindrance and making the reaction much easier. Structure and activity analysis demonstrated that the HHPP product was comparable to the PEGylated rhCNTF prepared through a conventional method. Overall, this work demonstrated that HHPP, as we proposed, may have application potentials in various conjugations of biomacromolecules.


Asunto(s)
Factor Neurotrófico Ciliar/química , Polietilenglicoles/química , Secuencia de Aminoácidos , Factor Neurotrófico Ciliar/metabolismo , Humanos , Presión Hidrostática , Maleimidas/química , Maleimidas/metabolismo , Modelos Moleculares , Polietilenglicoles/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
3.
Mol Pharm ; 14(11): 3739-3749, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-28950700

RESUMEN

For the purpose of improving the tumor delivery of doxorubicin (DOX), a kind of peptide-DOXO conjugate was designed and prepared, in which the peptide composed of an albumin-binding domain (ABD) and a tumor-specific internalizing sequence (RGDK or RPARPAR) was conjugated to a (6-maleimidocaproyl) hydrazone derivative of doxorubicin (DOXO-EMCH). The doxorubicin uptake by lung cancer cell line of A549 evidenced that the conjugates are capable of being internalized through a tumor-specific sequence mediated manner, and the intracellular imaging of distribution in A549 cell demonstrated that the conjugated doxorubicin can be delivered to the cell nucleus. The A549 cell cytotoxicity of peptide-DOXO conjugates was presented with IC50 values and shown in the range of about 9-11 µM. Pharmacokinetics study revealed that both conjugates exhibited nearly 5.5 times longer half-time than DOX, and about 4 times than DOXO-EMCH. The in vivo growth inhibitions of the two peptide-DOXO conjugates on BALB/c nude mice bearing A549 tumor (47.78% for ABD-RGDK-DOXO and 47.09% for ABD-RPARPAR-DOXO) were much stronger than that of doxorubicin and DOXO-EMCH (24.28% and 25.67% respectively) at a doxorubicin equivalent dose. Besides, the in vivo fluorescence imaging study confirmed that the peptide markedly increased the payload accumulation in tumor tissues and indicated that albumin binding domain fusing tumor-specific sequence effectively enhanced the tumor delivery of doxorubicin and thus improved its therapeutic potency.


Asunto(s)
Antibióticos Antineoplásicos/metabolismo , Doxorrubicina/análogos & derivados , Doxorrubicina/metabolismo , Hidrazonas/metabolismo , Péptidos/química , Animales , Línea Celular Tumoral , Humanos , Ratones , Ratones Desnudos
4.
J Biotechnol ; 254: 34-42, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-28591619

RESUMEN

Human ferritin (HFn) nanocaging is becoming an appealing platform for anticancer drugs delivery. However, protein aggregation always occurs during the encapsulation process, resulting in low production efficiency. A new approach using high hydrostatic pressure (HHP) was explored in this study to overcome the problem of loading doxorubicin (DOX) in HFn. At the pressure of 500MPa and pH 5.5, DOX molecules were found to be encapsulated into HFn. Meanwhile, combining it with an additive of 20mM arginine completely inhibited precipitation and aggregation, resulting in highly monodispersed nanoparticles with almost 100% protein recovery. Furthermore, stepwise decompression and incubation of the complex in atmospheric pressure at pH 7.4 for another period could further increase the DOX encapsulation ratio. The HFn-DOX nanoparticles (NPs) showed similar morphology and structural features to the hollow cage and no notable drug leakage occurred for HFn-DOX NPs when stored at 4°C and pH 7.4 for two weeks. HFn-DOX NPs prepared through HHP also showed significant cytotoxicity in vitro and higher antitumor bioactivity in vivo than naked DOX. Moreover, This HHP encapsulation strategy could economize on DOX that was greatly wasted during the conventional preparation process simply through a desalting column. These results indicated that HHP could offer a feasible approach with high efficiency for the production of HFn-DOX NPs.


Asunto(s)
Antineoplásicos/química , Doxorrubicina/química , Ferritinas/química , Neoplasias/tratamiento farmacológico , Antineoplásicos/síntesis química , Antineoplásicos/uso terapéutico , Doxorrubicina/síntesis química , Doxorrubicina/uso terapéutico , Sistemas de Liberación de Medicamentos , Ferritinas/síntesis química , Ferritinas/uso terapéutico , Humanos , Presión Hidrostática , Nanopartículas/química , Nanopartículas/uso terapéutico , Polietilenglicoles/síntesis química , Polietilenglicoles/química
5.
Int J Pharm ; 529(1-2): 275-284, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28652173

RESUMEN

To overcome the deficiency of rapid elimination from blood, the truncated human recombinant ciliary neurotrophic factor was formulated by site-specific attachment of different-sized PEG-maleimide or by cross-linking with human transferrin through a hetero-bi-functional PEG linker (NHS-PEG5k-MAL). The PEGylated CNTF was purified by a two-step chromatography procedure and the transferrin coupling CNTF conjugate was separated through an elegant protocol. The conjugation site on CNTF was identified by peptide mapping analysis and validated that the linkage of the conjugates was specifically happened to Cys17 residue. Although both PEGylated and transferrin coupling CNTF demonstrated decreased cell based residual activity, markedly enhanced pharmacokinetic behaviors in normal male Sprague-Dawley rats were observed, especially for the PEG40k-CNTF with approximately 58-times improvement compared with the unmodified counterpart. The evaluation of the in vivo potency of body weight-losing was performed with normal male C57BL6 mice and the results revealed that both PEGylation and transferrin coupling could achieve improved therapeutic benefits relative to that of CNTF. Besides, PEG20k/40k-CNTF demonstrated more effective than transferrin coupling CNTF (Tf-PEG5k-CNTF) despite that the later showed preferable pharmacokinetic profile and cell based residual activity compared with PEG20k-CNTF. Weekly subcutaneous administration of PEG40k-CNTF with 0.5mg/kg and 1.0mg/kg dose resulted in approximately 35% and 50% decrease in food intake during one interval period of injection, indicating that PEG40k-CNTF is the most potential anti-obese agent for therapeutics.


Asunto(s)
Fármacos Antiobesidad/farmacología , Factor Neurotrófico Ciliar/farmacología , Portadores de Fármacos/química , Polietilenglicoles/química , Transferrina/química , Animales , Fármacos Antiobesidad/farmacocinética , Peso Corporal , Factor Neurotrófico Ciliar/farmacocinética , Humanos , Masculino , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/farmacocinética , Proteínas Recombinantes/farmacología
6.
Vaccine ; 34(34): 4032-9, 2016 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-27302339

RESUMEN

Development of acellular pertussis vaccine (aPV) requires purification of several components from Bordetella pertussis. While the components pertussis toxin (PT) and filamentous hemagglutinin (FHA) have been successfully purified, the third component, pertactin, proves to be a difficult target due to its very low concentration. In order to solve its purification problem, we performed the surface potential analysis with GRASP2 program. The results demonstrated that there are two major charge patches, one negative and one positive, which are located separately on this linear protein. For this special feature, we designed a dual ion exchange chromatography strategy including an anionic exchange and a cationic exchange process for separation of pertactin from the heat extract of B. pertussis. The initial anionic exchange chromatography concentrated the product from 1.7% to 14.6%, with recovery of 80%. The second cationic exchange chromatography increased the purity to 33%, with recovery of 83%. The final purification was accomplished by hydrophobic interaction chromatography, yielding a purity of 96%. The total recovery of the three columns was 61%. Characterization of the purified antigen was performed with CD, intrinsic fluorescence, HP-SEC and western-blot, showing that the purified protein kept its natural conformation and immune-reactivity. The rationally designed process proved to be feasible, and it is suitable for large-scale preparation of the third aPV component pertactin.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/aislamiento & purificación , Vacuna contra la Tos Ferina/química , Factores de Virulencia de Bordetella/química , Factores de Virulencia de Bordetella/aislamiento & purificación , Bordetella pertussis , Cromatografía por Intercambio Iónico , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...