Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioconjug Chem ; 35(9): 1450-1458, 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39213480

RESUMEN

A porphyrin-containing nanoscale covalent organic polymer (COP) was fabricated from 5,10,15,20-tetra(4-carboxyphenyl)porphyrin (TCPP) and cystamine via an acylation reaction. On the one hand, TCPP can induce tumor cell death by laser irradiation. Due to the presence of disulfide bonds of cystamine which can react with glutathione, it exhibits depletion of glutathione and accumulation of peroxides in tumor cells. Ultimately by the hyaluronic acid to encapsulate the COP to get S-COP@HA, the nanoparticle with a size of 168.6 nm also exhibits good tumor accumulation and biosafety. Significant inhibition of tumor cell growth was observed after two consecutive doses of S-COP@HA at relatively low laser densities. This combination therapy was proved to reduce the level of reduced glutathione in tumor cells, where ferroptosis occurs after photodynamic treatment. Overall, this study presents a potent, good therapeutic option for the effective enhancement of photodynamic therapy by glutathione depletion.


Asunto(s)
Ferroptosis , Glutatión , Fotoquimioterapia , Porfirinas , Glutatión/metabolismo , Fotoquimioterapia/métodos , Porfirinas/química , Porfirinas/farmacología , Ferroptosis/efectos de los fármacos , Humanos , Animales , Nanopartículas/química , Polímeros/química , Línea Celular Tumoral , Ratones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Ácido Hialurónico/química
2.
Nat Microbiol ; 9(2): 502-513, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38228859

RESUMEN

Probiotic supplements are suggested to promote human health by preventing pathogen colonization. However, the mechanistic bases for their efficacy in vivo are largely uncharacterized. Here using metabolomics and bacterial genetics, we show that the human oral probiotic Streptococcus salivarius K12 (SAL) produces salivabactin, an antibiotic that effectively inhibits pathogenic Streptococcus pyogenes (GAS) in vitro and in mice. However, prophylactic dosing with SAL enhanced GAS colonization in mice and ex vivo in human saliva. We showed that, on co-colonization, GAS responds to a SAL intercellular peptide signal that controls SAL salivabactin production. GAS produces a secreted protease, SpeB, that targets SAL-derived salivaricins and enhances GAS survival. Using this knowledge, we re-engineered probiotic SAL to prevent signal eavesdropping by GAS and potentiate SAL antimicrobials. This engineered probiotic demonstrated superior efficacy in preventing GAS colonization in vivo. Our findings show that knowledge of interspecies interactions can identify antibiotic- and probiotic-based strategies to combat infection.


Asunto(s)
Probióticos , Infecciones Estreptocócicas , Animales , Humanos , Ratones , Antibacterianos , Infecciones Estreptocócicas/microbiología , Streptococcus pyogenes , Saliva
3.
Int J Biol Macromol ; 254(Pt 3): 126801, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37689288

RESUMEN

Histone lysine-specific demethylase 1 (LSD1) expression has been evaluated in multiple tumors, including gastric cancer (GC). However, the mechanisms underlying LSD1 dysregulation in GC remain largely unclear. In this study, neural precursor cell-expressed developmentally down-regulated protein 8 (NEDD8) was identified to be conjugated to LSD1 at K63 by ubiquitin-conjugating enzyme E2 M (UBE2M), and this neddylated LSD1 could promote LSD1 ubiquitination and degradation, leading to a decrease of GC cell stemness and chemoresistance. Herein, our findings revealed a novel mechanism of LSD1 neddylation and its contribution to decreasing GC cell stemness and chemoresistance. Taken together, our findings may whistle about the future application of neddylation inhibitors.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Resistencia a Antineoplásicos , Ubiquitinación , Enzimas Ubiquitina-Conjugadoras/genética , Enzimas Ubiquitina-Conjugadoras/metabolismo , Histona Demetilasas
4.
Eur J Med Chem ; 260: 115732, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37651876

RESUMEN

Neddylation is a protein modification process similar to ubiquitination, carried out through a series of activating (E1), conjugating (E2), and ligating (E3) enzymes. This process has been found to be overactive in various cancers, leading to increased oncogenic activities. Ubiquitin-conjugating enzyme 2 M (UBE2M) is one of two neddylation enzymes that play a vital role in this pathway. Studies have shown that targeting UBE2M in cancer treatment is crucial, as it regulates many molecular mechanisms like DNA damage, apoptosis, and cell proliferation. However, developing small molecule inhibitors against UBE2M remains challenging due to the lack of suitable druggable pockets. We have discovered that Micafungin, an antifungal agent that inhibits the production of 1,3-ß-D-glucan in fungal cell walls, acts as a neddylation inhibitor that targets UBE2M. Biochemical studies reveal that Micafungin obstructs neddylation and stabilizes UBE2M. In cellular experiments, the drug was found to interact with UBE2M, prevent neddylation, accumulate cullin ring ligases (CRLs) substrates, reduce cell survival and migration, and induce DNA damage in gastric cancer cells. This research uncovers a new anti-cancer mechanism for Micafungin, paving the way for the development of a novel class of neddylation inhibitors that target UBE2M.


Asunto(s)
Antifúngicos , Neoplasias , Antifúngicos/farmacología , Apoptosis , Núcleo Celular , Proliferación Celular , Micafungina/farmacología , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/metabolismo
5.
J Org Chem ; 88(11): 7580-7585, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37126664

RESUMEN

Keto sugar nucleotides (KSNs) are common and versatile precursors to various deoxy sugar nucleotides, which are substrates for the corresponding glycosyltransferases involved in the biosynthesis of glycoproteins, glycolipids, and natural products. However, there has been no KSN synthesized chemically due to the inherent instability. Herein, the first chemical synthesis of the archetypal KSN TDP-4-keto-6-deoxy-d-glucose (1) is achieved by an efficient and optimized route, providing feasible access to other KSNs and analogues, thereby opening a new avenue for new applications.


Asunto(s)
Glucosa , Nucleótidos , Glicosiltransferasas
6.
Chin J Nat Med ; 20(4): 241-257, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35487595

RESUMEN

Lysine specific demethylase 1 (LSD1), a transcriptional corepressor or coactivator that serves as a demethylase of histone 3 lysine 4 and 9, has become a potential therapeutic target for cancer therapy. LSD1 mediates many cellular signaling pathways and regulates cancer cell proliferation, invasion, migration, and differentiation. Recent research has focused on the exploration of its pharmacological inhibitors. Natural products are a major source of compounds with abundant scaffold diversity and structural complexity, which have made a major contribution to drug discovery, particularly anticancer agents. In this review, we briefly highlight recent advances in natural LSD1 inhibitors over the past decade. We present a comprehensive review on their discovery and identification process, natural plant sources, chemical structures, anticancer effects, and structure-activity relationships, and finally provide our perspective on the development of novel natural LSD1 inhibitors for cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Histona Demetilasas/química , Histona Demetilasas/metabolismo , Humanos , Lisina/uso terapéutico , Neoplasias/tratamiento farmacológico
7.
Nat Prod Rep ; 39(5): 991-1014, 2022 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-35288725

RESUMEN

Covering: up to 2021Colibactin(s), a group of secondary metabolites produced by the pks island (clb cluster) of Escherichia coli, shows genotoxicity relevant to colorectal cancer and thus significantly affects human health. Over the last 15 years, substantial efforts have been exerted to reveal the molecular structure of colibactin, but progress is slow owing to its instability, low titer, and elusive and complex biosynthesis logic. Fortunately, benefiting from the discovery of the prodrug mechanism, over 40 precursors of colibactin have been reported. Some key biosynthesis genes located on the pks island have also been characterised. Using an integrated bioinformatics, metabolomics, and chemical synthesis approach, researchers have recently characterised the structure and possible biosynthesis processes of colibactin, thereby providing new insights into the unique biosynthesis logic and the underlying mechanism of the biological activity of colibactin. Early developments in the study of colibactin have been summarised in several previous reviews covering various study periods, whereas the two most recent reviews have focused primarily on the chemical synthesis of colibactin. The present review aims to provide an update on the biosynthesis and bioactivities of colibactin.


Asunto(s)
Mutágenos , Policétidos , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Mutágenos/metabolismo , Péptidos/química , Policétidos/metabolismo
8.
Nat Chem Biol ; 17(5): 576-584, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33664521

RESUMEN

Cariogenic Streptococcus mutans is known as a predominant etiological agent of dental caries due to its exceptional capacity to form biofilms. From strains of S. mutans isolated from dental plaque, we discovered, in the present study, a polyketide/nonribosomal peptide biosynthetic gene cluster, muf, which directly correlates with a strong biofilm-forming capability. We then identified the muf-associated bioactive product, mutanofactin-697, which contains a new molecular scaffold, along with its biosynthetic logic. Further mode-of-action studies revealed that mutanofactin-697 binds to S. mutans cells and also extracellular DNA, increases bacterial hydrophobicity, and promotes bacterial adhesion and subsequent biofilm formation. Our findings provided an example of a microbial secondary metabolite promoting biofilm formation via a physicochemical approach, highlighting the importance of secondary metabolism in mediating critical processes related to the development of dental caries.


Asunto(s)
Biopelículas/efectos de los fármacos , Factores Biológicos/biosíntesis , Genes Bacterianos , Metabolismo Secundario/genética , Streptococcus mutans/metabolismo , Adhesión Bacteriana/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Factores Biológicos/aislamiento & purificación , Factores Biológicos/farmacología , Biología Computacional/métodos , ADN/genética , ADN/metabolismo , Caries Dental/microbiología , Caries Dental/patología , Regulación Bacteriana de la Expresión Génica , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Familia de Multigenes , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos , Unión Proteica , Streptococcus mutans/genética , Streptococcus mutans/crecimiento & desarrollo , Streptococcus mutans/patogenicidad
9.
Bioorg Chem ; 97: 103648, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32065882

RESUMEN

Natural protoberberine alkaloids were first identified and characterized as potent, selective and cellular active lysine specific demethylase 1 (LSD1) inhibitors. Due to our study, isoquinoline-based tetracyclic scaffold was identified as the key structural element for their anti-LSD1 activity, subtle changes of substituents attached to the core structure led to dramatic changes of the activity. Among these protoberberine alkaloids, epiberberine potently inhibited LSD1 (IC50 = 0.14 ± 0.01 µM) and was highly selective to LSD1 over MAO-A/B. Furthermore, epiberberine could induce the expression of CD86, CD11b and CD14 in THP-1 and HL-60 cells, confirming its cellular activity of inducing acute myeloid leukemia (AML) cells differentiation. Moreover, epiberberine prolonged the survival of THP-1 cells bearing mice and inhibited the growth of AML cells in vivo without obvious global toxicity. These findings give the potential application of epiberberine in AML treatment, and the isoquinoline-based tetracyclic scaffold could be used for further development of LSD1 inhibitors.


Asunto(s)
Antineoplásicos/uso terapéutico , Alcaloides de Berberina/uso terapéutico , Histona Demetilasas/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Animales , Antineoplásicos/química , Alcaloides de Berberina/farmacología , Diferenciación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Células HL-60 , Histona Demetilasas/metabolismo , Humanos , Ratones , Ratones SCID
10.
Nat Chem ; 11(10): 880-889, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31527851

RESUMEN

Colibactin is an assumed human gut bacterial genotoxin, whose biosynthesis is linked to the clb genomic island that has a widespread distribution in pathogenic and commensal human enterobacteria. Colibactin-producing gut microbes promote colon tumour formation and enhance the progression of colorectal cancer via cellular senescence and death induced by DNA double-strand breaks (DSBs); however, the chemical basis that contributes to the pathogenesis at the molecular level has not been fully characterized. Here, we report the discovery of colibactin-645, a macrocyclic colibactin metabolite that recapitulates the previously assumed genotoxicity and cytotoxicity. Colibactin-645 shows strong DNA DSB activity in vitro and in human cell cultures via a unique copper-mediated oxidative mechanism. We also delineate a complete biosynthetic model for colibactin-645, which highlights a unique fate of the aminomalonate-building monomer in forming the C-terminal 5-hydroxy-4-oxazolecarboxylic acid moiety through the activities of both the polyketide synthase ClbO and the amidase ClbL. This work thus provides a molecular basis for colibactin's DNA DSB activity and facilitates further mechanistic study of colibactin-related colorectal cancer incidence and prevention.


Asunto(s)
Cobre/farmacología , Roturas del ADN de Doble Cadena/efectos de los fármacos , Compuestos Macrocíclicos/farmacología , Péptidos/farmacología , Policétidos/farmacología , Cobre/química , Compuestos Macrocíclicos/química , Conformación Molecular , Estrés Oxidativo/efectos de los fármacos , Péptidos/química , Policétidos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA