Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.148
Filtrar
1.
J Neurosurg Spine ; : 1-2, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38968621
2.
Angew Chem Int Ed Engl ; : e202407639, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976402

RESUMEN

Gradual disability of Zn anode and high negative/positive electrode (N/P) ratio usually depreciate calendar life and energy density of aqueous Zn batteries (AZBs). Herein, within original Zn2+-free hydrated electrolytes, a steric hindrance/electric field shielding-driven "hydrophobic ion barrier" is engineered towards ultradurable (002) plane-exposed Zn stripping/plating to solve this issue. Guided by theoretical simulations, hydrophobic adiponitrile (ADN) is employed as a steric hindrance agent to ally with inert electric field shielding additive (Mn2+) for plane adsorption priority manipulation, thereby constructing the "hydrophobic ion barrier". This design robustly suppresses the (002) plane/dendrite growth, enabling ultradurable (002) plane-exposed dendrite-free Zn stripping/plating. Even being cycled in Zn‖Zn symmetric cell over 2150 h at 0.5 mA cm-2, the efficacy remains well-kept. Additionally, Zn‖Zn symmetric cells can be also stably cycled over 918 h at 1 mA cm-2, verifying uncompromised Zn stripping/plating kinetics. As-assembled anode-less Zn‖VOPO4·2H2O full cells with a low N/P ratio (2:1) show a high energy density of 75.2 Wh kg-1full electrode after 842 cycles at 1 A g-1, far surpassing counterparts with thick Zn anode and low cathode loading mass, featuring excellent practicality. This study opens a new avenue by robust "hydrophobic ion barrier" design to develop long-life anode-less Zn batteries.

3.
Chempluschem ; : e202400364, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38978154

RESUMEN

Nuclear energy is a competitive and environmentally friendly low-carbon energy source. It is seen as an important avenue for satisfying energy demands, responding to the energy crisis, and mitigating global climate change. However, much attention has been paid to achieving the effective treatment of radionuclide oxoanions produced in nuclear waste. Initially, advanced adsorbents were mainly available in powder form, which meant that additional purification processes were usually required for separation and recovery in industrial applications. Therefore, to meet the practical requirements of industrial applications, materials need to be molded and processed into forms such as beads, membranes, gels, and resins. Here, we summarize the fabrication of porous materials used for capturing typical radionuclide oxoanions, including UO22+, TcO4-, IO3-, SeO32-, and SeO4-.

4.
J Environ Manage ; 366: 121587, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38981272

RESUMEN

Nutrient loads in lakes are spatially heterogeneous, but current spatial analysis method are mainly zonal, making them subjective and uncertain. This study proposes a high-resolution model for assessing spatial differences in nutrient loads based on the lattice Boltzmann method. The model was applied to Dongping Lake in China. Firstly, the contribution rates of four influencing factors, including water transfer, inflow, wind, and internal load, were calculated at different locations in the lake. Then, their proportionate contributions during different intervals to the whole lake area were calculated. Finally, the cumulative load could be calculated for any location within the lake. The validation showed that the model simulated hydrodynamics and water quality well, with relative errors between the simulated and measured water quality data smaller than 0.45. Wind increased the nutrient loads in most parts of the lake. The loads tended to accumulate in the east central area where high-frequency circulation patterns were present. Overall, the proposed water quality model based on the lattice Boltzmann method was able to simulate seven indexes. Therefore, this model represents a useful tool for thoroughly assessing nutrient load distributions in large shallow lakes and could help refine lake restoration management.

5.
J Psychosoc Oncol ; : 1-17, 2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-38972065

RESUMEN

OBJECTIVE: To explore the effects of live music to decrease psychological distress in adolescent and young adult (AYA) patients undergoing hematopoietic stem cell transplantation (HSCT). METHOD: A quasi-experimental study was conducted. Sixty patients undergoing HSCT were divided into two groups, receiving either 4 week of live music (n = 31) or standard care (n = 29). Psychological distress, anxiety, the severity of symptom clusters and symptom interference were measured. RESULTS: When compared with the immediately and 1 month after intervention, patients in LM intervention group had significantly lower psychological distress and anxiety level than wait-list group. AYA undergoing HSCT reported significantly milder general symptom cluster and neurological symptom cluster at T3 than at baseline. CONCLUSIONS: Live music intervention showed a positive effect on relieving psychological distress and anxiety in AYA patients undergoing HSCT. However, further researches are warranted to explore the effects of live music intervention on symptom cluster.

6.
Sci Rep ; 14(1): 15128, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956254

RESUMEN

Mohr-Coulomb (MC) strength criterion has been widely used in many classical analytical expressions and numerical modeling due to its simple physical calculation, but the MC criterion is not suitable for describing the failure envelope of rock masses. In order to directly apply MC parameters to analytical expressions or numerical modeling in rock slope stability analysis, scholars established a criterion for converting Hoek-Brown (HB) parameters to equivalent MC parameters. However, the consistency of HB parameters and equivalent MC parameters in calculating critical acceleration of slope needs to be further explored and confirmed. Therefore, HB parameters are converted into equivalent MC parameters by considering the influence of slope angle (1# case and 2# case when slope angle is not considered and slope angle is considered respectively). Then, the lower-bound of finite element limit analysis is used for numerical modeling, and the results of calculating critical acceleration using HB parameters and equivalent MC parameters are compared, and the influence of related parameters on the calculation of critical acceleration is studied. Finally, the influence of different critical accelerations on the calculation of slope permanent displacement is further analyzed through numerical cases and engineering examples. The results show that: (1) In the 1# case, the critical acceleration obtained by the equivalent MC parameters are significantly larger than that obtained by the 2 #case and the HB parameters, and this difference becomes more obvious with the increase of slope angle. The critical acceleration obtained by the 2# case is very close to the HB parameters; (2) In the 1# case, slope height is inversely proportional to ΔAc (HB(Ac) - 1#(Ac)), and with the increase of slope height, ΔAc decreases, while in the 2# case, the difference of ΔAc (HB(Ac) - 2#(Ac)) is not significant; (3) In the 1# case, the sensitivity of the HB parameters to ΔAc is D > GSI > mi > σci, but in the 2# case, there is no sensitivity-related regularity; (4) The application of HB parameters and equivalent MC parameters in slope permanent displacement is studied through numerical cases and engineering examples, and the limitations of equivalent MC parameters in rock slope stability evaluation are revealed.

7.
J Am Chem Soc ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016781

RESUMEN

The investigation of long noncoding RNAs (lncRNAs) and RNA binding proteins (RBPs) interactions in living cell holds great significance for elucidating their critical roles in a variety of biological activities, but limited techniques are available to profile the temporal-spatial dynamic heterogeneity. Here, we introduced a molecular beacon-functionalized nanoneedle array designed for spatially resolved profiling of lncRNA-RBP interactions (Nano-SpatiaLR). A nanoneedle array modified with a molecular beacon is employed to selectively isolate specific intracellular lncRNAs and their associated RBPs without affecting cell viability. The RBPs are then in situ analyzed with a fluorescent labeled antibody and colocalized with lncRNA signals to get a quantitative measurement of their dynamic interactions. Additionally, leveraging the spatial distribution and nanoscale modality of the nanoneedle array, this technique provides the spatial heterogeneity information on cellular lncRNA-RBPs interaction at single cell resolution. In this study, we tracked the temporal-spatial interactive heterogeneity dynamics of lncRNA-RBPs interaction within living cells across different biological progresses. Our findings demonstrated that the interactions between lncRNA HOTAIR and RBPs EZH2 and LSD1 undergo significant changes in response to drug treatments, particularly in tumor cells. Moreover, these interactions become more intensified as tumor cells aggregate during the proliferation process.

8.
Nanotechnology ; 35(40)2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38964289

RESUMEN

Liver cancer, which is well-known to us as one of human most prevalent malignancies across the globe, poses a significant risk to live condition and life safety of individuals in every region of the planet. It has been shown that immune checkpoint treatment may enhance survival benefits and make a significant contribution to patient prognosis, which makes it a promising and popular therapeutic option for treating liver cancer at the current time. However, there are only a very few numbers of patients who can benefit from the treatment and there also exist adverse events such as toxic effects and so on, which is still required further research and discussion. Fortunately, the clustered regularly interspaced short palindromic repeat/CRISPR-associated nuclease 9 (CRISPR/Cas9) provides a potential strategy for immunotherapy and immune checkpoint therapy of liver cancer. In this review, we focus on elucidating the fundamentals of the recently developed CRISPR/Cas9 technology as well as the present-day landscape of immune checkpoint treatment which pertains to liver cancer. What's more, we aim to explore the molecular mechanism of immune checkpoint treatment in liver cancer based on CRISPR/Cas9 technology. At last, its encouraging and powerful potential in the future application of the clinic is discussed, along with the issues that already exist and the difficulties that must be overcome. To sum up, our ultimate goal is to create a fresh knowledge that we can utilize this new CRISPR/Cas9 technology for the current popular immune checkpoint therapy to overcome the treatment issues of liver cancer.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Edición Génica/métodos , Inmunoterapia/métodos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Animales
9.
Virol J ; 21(1): 155, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982509

RESUMEN

BACKGROUND: Canine enteric coronavirus (CECoV) is a prevalent infectious disease among dogs worldwide, yet its epidemiology in mainland China remains poorly understood. This systematic review and meta-analysis aimed to assess the prevalence of CECoV in mainland China and identify factors influencing its prevalence. METHODS: A comprehensive literature search was conducted across multiple databases for studies regarding CECoV epidemiology of China. PubMed, CNKI, Wanfang, and CQVIP were searched to obtain the studies. Eligible studies were selected based on predefined criteria, and data were extracted and synthesized. The quality the studies was assessed using the JBI assessment tool. Heterogeneity was checked using I2 test statistics followed by subgroup and sensitivity analysis. Subgroup analyses were performed to explore variations in CECoV prevalence by factors such as year, region, season, health status, social housing type, gender, age, and breed. Publication bias was assessed using a funnel plot and eggers test that was followed by trim and fill analysis. RESULTS: A total of 27 studies involving 21,034 samples were included in the meta-analysis. The overall pooled prevalence of CECoV in mainland China was estimated to be 0.30 (95% CI 0.24-0.37), indicating persistent circulation of the virus. Subgroup analyses revealed higher prevalence rates in younger dogs, multi-dog households, apparently healthy dogs, and certain regions such as southwest China. Seasonal variations were observed, with lower prevalence rates in summer. However, no significant differences in prevalence were found by gender. CONCLUSIONS: This study provides valuable insights into the epidemiology of CECoV in mainland China, highlighting the persistent circulation of the virus and identifying factors associated with higher prevalence rates. Continuous monitoring and surveillance efforts, along with research into accurate detection methods and preventive measures, are essential for the effective control of CECoV and mitigation of its potential impact on animal and human health.


Asunto(s)
Infecciones por Coronavirus , Coronavirus Canino , Enfermedades de los Perros , Animales , Perros , China/epidemiología , Prevalencia , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/virología , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Coronavirus Canino/genética , Coronavirus Canino/aislamiento & purificación
11.
Environ Geochem Health ; 46(9): 315, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001912

RESUMEN

Mining activities have resulted in a substantial accumulation of cadmium (Cd) in agricultural soils, particularly in southern China. Long-term Cd exposure can cause plant growth inhibition and various diseases. Rapid identification of the extent of soil Cd pollution and its driving factors are essential for soil management and risk assessment. However, traditional geostatistical methods are difficult to simulate the complex nonlinear relationships between soil Cd and potential features. In this study, sequential extraction and hotspot analyses indicated that Cd accumulation increased significantly near mining sites and exhibited high mobility. The concentration of Cd was estimated using three machine learning models based on 3169 topsoil samples, seven quantitative variables (soil pH, Fe, Ca, Mn, TOC, Al/Si and ba value) and three quantitative variables (soil parent rock, terrain and soil type). The random forest model achieved marginally better performance than the other models, with an R2 of 0.78. Importance analysis revealed that soil pH and Ca and Mn contents were the most significant factors affecting Cd accumulation and migration. Conversely, due to the essence of controlling Cd migration being soil property, soil type, terrain, and soil parent materials had little impact on the spatial distribution of soil Cd under the influence of mining activities. Our results provide a better understanding of the geochemical behavior of soil Cd in mining areas, which could be helpful for environmental management departments in controlling the diffusion of Cd pollution and capturing key targets for soil remediation.


Asunto(s)
Cadmio , Aprendizaje Automático , Minería , Contaminantes del Suelo , Suelo , Cadmio/análisis , Contaminantes del Suelo/análisis , China , Suelo/química , Monitoreo del Ambiente/métodos , Concentración de Iones de Hidrógeno
12.
Angew Chem Int Ed Engl ; : e202411166, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008335

RESUMEN

Molecular editing promises to facilitate the rapid diversification of complex molecular architectures by rapidly and conveniently altering core frameworks. This approach has the potential to accelerate both drug discovery and total synthesis. In this study, we present a novel protocol for the molecular editing of pyrroles. Initially, N-Boc pyrroles and alkynes are converted into N-bridged compounds through a Diels-Alder reaction. These compounds then undergo deprotection of the Boc group, nitrosylation, and cheletropic N2O extrusion to yield benzene or naphthalene products. By using benzyne as a substrate, this method can be conceptually viewed as a fusion of skeletal editing of the pyrrole ring and site-selective peripheral editing of the benzene ring. Furthermore, this proof-of-concept protocol has demonstrated its potential to transform the (hetero)arene motif from commercially available drugs, offering the possibility of generating new biologically active compounds.

13.
J Cancer ; 15(13): 4205-4218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947377

RESUMEN

Purpose: Bone metastasis (BoM) has been closely associated with increased morbidity and poor survival outcomes in patients with non-small cell lung cancer (NSCLC). Given its significant implications, this study aimed to systematically compare the biological characteristics between advanced NSCLC patients with and without BoM. Methods: In this study, the genomic alterations from the tumor tissue DNA of 42 advanced NSCLC patients without BoM and 67 patients with BoM and were analyzed by a next-generation sequencing (NGS) panel. The serum concentrations of 18 heavy metals were detected by inductively coupled plasma emission spectrometry (ICP-MS). Results: A total of 157 somatic mutations across 18 mutated genes and 105 somatic mutations spanning 16 mutant genes were identified in 61 out of 67 (91.05%) patients with BoM and 37 of 42 (88.10%) patients without BoM, respectively. Among these mutated genes, NTRK1, FGFR1, ERBB4, NTRK3, and FGFR2 stood out exclusively in patients with BoM, whereas BRAF, GNAS, and AKT1 manifested solely in those without BoM. Moreover, both co-occurring sets of genes and mutually exclusive sets of genes in patients with BoM were different from those in patients without BoM. In addition, the serum concentrations of Cu and Sr in patients with BoM were significantly higher than in patients without BoM. One of our aims was to explore how these heavy metals associated with BoM interacted with other heavy metals, and significant positive correlations were observed between Cu and Co, between Cu and Cr, between Sr and Ba, and between Sr and Ni in patients with BoM. Given the significant impacts of molecular characteristics on patients' prognosis, we also observed a noteworthy negative correlation between EGFR mutations and Co, alongside a significant positive correlation between TP53 mutations and Cd. Conclusions: The genomic alterations, somatic interactions, key signaling pathways, functional biological information, and accumulations of serum heavy metals were markedly different between advanced NSCLC patients with and without BoM, and certain heavy metals (e.g., Cu, Sr) might have potentials to identify high-risk patients with BoM.

14.
Mol Psychiatry ; 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38971895

RESUMEN

Previous studies have shown an association between the thalamocortical dysconnectivity and treatment-resistant depression (TRD). Whether a single subanesthetic dose of ketamine may change thalamocortical connectivity among patients with TRD is unclear. Whether these changes in thalamocortical connectivity is associated with the antidepressant and antisuicidal effects of ketamine treatment is also unclear. Two resting-state functional MRIs were collected in two clinical trials of 48 patients with TRD (clinical trial 1; 32 receiving ketamine, 16 receiving a normal saline placebo) and 48 patients with TRD and strong suicidal ideation (clinical trial 2; 24 receiving ketamine, 24 receiving midazolam), respectively. All participants underwent rs-fMRI before and 3 days after infusion. Seed-based functional connectivity (FC) was analyzed in the left/right thalamus. FCs between the bilateral thalamus and right middle frontal cortex (BA46) and between the left thalamus and left anterior paracingulate gyrus (BA8) increased among patients in the ketamine group in clinical trials 1 and 2, respectively. FCs between the right thalamus and bilateral frontal pole (BA9) and between the right thalamus and left rostral paracingulate gyrus (BA10) decreased among patients in the ketamine group in clinical trials 1 and 2, respectively. However, the associations between those FC changes and clinical symptom changes did not survive statistical significance after multiple comparison corrections. Whether ketamine-related changes in thalamocortical connectivity may be associated with ketamine's antidepressant and antisuicidal effects would need further investigation. Clinical trials registration: UMIN Clinical Trials Registry (UMIN-CTR): Registration number: UMIN000016985 and UMIN000033916.

15.
Anal Biochem ; : 115625, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39038508

RESUMEN

As the main active glycoprotein of egg white, the biological functions of chicken ovomucin α- and ß-subunit are closely related to the structure of glycans. However, the exact composition and structure of the subunit glycans are still unknown. We obtained highly pure chicken ovomucin α-subunit and ß-subunit protein bands by the strategy combined with two-step isoelectric precipitation and SDS-PAGE gel electrophoresis. The ammonia-catalyzed one-pot procedure was then used to release and capture α-and ß-subunit protein glycans with 1-phenyl- 3-Methyl-5-pyrazolone (PMP). The N/O-glycans of bis-PMP derivatives were purified and analyzed by LC-MS. More importantly, an effective dual modification was performed to accurately quantify neutral and sialylated O-glycans through methylamidation of sialic acid residues and simultaneously through carbonyl condensation reactions of reducing ends with PMP. We first showed that the α-subunit protein has only N-glycosylation modification, and the ß-subunit only O-glycosylation, a total of 22 N-glycans and 20 O-glycans were identified in the α- and ß-subunit, respectively. In addition, the complex N-glycan (47%) and the sialylated O-glycan (77%) are each major types of the above subunits. Such findings in this study provide a basis for studying the functional and biological activities of chicken ovomucin glycans.

16.
Zhongguo Zhong Yao Za Zhi ; 49(11): 3002-3011, 2024 Jun.
Artículo en Chino | MEDLINE | ID: mdl-39041160

RESUMEN

This study aims to observe the effects of the traditional Chinese medicine prescription Dahuang Zhechong Pills(DHZCP on renal aging and explore its potential multi-target effects. Rats were assigned into the normal, model, DHZCP, and vitamin E(VE)groups. Firstly, the rat model of D-galactose(D-gal)-induced renal aging was established. During the modeling period, the rats in the 4 groups were administrated with double distilled water, double distilled water, DHZCP suspension, and VE suspension, respectively,by gavage every day. On day 60 of intervention, the indicators of renal aging and injury in rats were measured, including the function,histopathological characteristics, senescence-associated ß-galactosidase( SA-ß-gal) staining, and expression levels of Klotho and proteins associated with cell cycle arrest and senescence-associated secretory phenotype(SASP) in the renal tissue. Moreover, nontargeted metabolomic analysis of the renal tissue was performed for the 4 groups of rats to screen out the potential biomarkers and metabolic pathways. Finally, the signaling pathways of key targets were preliminarily validated. The results showed that DHZCP and VE significantly improved the renal function, histopathological features of renal tubular/interstitial tissue, and degree of SA-ß-gal staining, up-regulated the expression level of Klotho, and down-regulated the expression levels of proteins associated with cell cycle arrest and SASP in the renal tissue of the aging rats. In addition, DHZCP and VE regulated the metabolites in the renal tissue of the aging rats. There were 21 common differential metabolites. Among them, 5 differential metabolites were significantly increased in the aging rats and recovered after DHZCP or VE treatment, and they were involved in the lipid metabolism and energy metabolism pathways. The areas under the curves of the groups in comparison varied within the range of 0. 88-1. DHZCP regulated multiple signaling pathways, such as the adenosine monophosphate-activated protein kinase(AMPK), cyclic guanosine monophosphate-protein kinase G( c GMP-PKG), cyclic adenylic acid( c AMP), phosphatidylinositol-3-kinase-protein kinase B( PI3K-Akt), mammalian target of rapamycin(mTOR), and autophagy signaling pathways. In addition, it affected the multiple metabolic pathways, such as renin secretion, longevity regulation pathway, diabetic cardiomyopathy, and niacin and nicotinamide metabolism. DHZCP and VE significantly up-regulated the expression level of the key proteins in the AMPK signaling pathway in the renal tissue of the aging rats. In all, DHZCP and VE could mitigate renal aging and injury. DHZCP exerted multi-target effects via multiple signaling pathways and metabolic pathways in the kidney, in which the AMPK signaling pathway may be one of the key targets for action.


Asunto(s)
Envejecimiento , Medicamentos Herbarios Chinos , Riñón , Metabolómica , Ratas Sprague-Dawley , Animales , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/farmacología , Ratas , Riñón/efectos de los fármacos , Riñón/metabolismo , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos
17.
J Sci Food Agric ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031773

RESUMEN

BACKGROUND: Different varieties of rice vary in planting time, stress resistance, and other characteristics. With advances in rice-breeding technology, the number of rice varieties has increased significantly, making variety identification crucial for both trading and planting. RESULTS: This study collected RGB images of 20 hybrid rice seed varieties. An enhanced deep super-resolution network (EDSR) was employed to enhance image resolution, and a variety classification model utilizing the high-resolution dataset demonstrated superior performance to that of the model using the low-resolution dataset. A novel training sample selection methodology was introduced integrating deep learning with the Kennard-Stone (KS) algorithm. Convolutional neural networks (CNN) and autoencoders served as supervised and unsupervised feature extractors, respectively. The extracted feature vectors were subsequently processed by the KS algorithm to select training samples. The proposed methodologies exhibited superior performance over the random selection approach in rice variety classification, with an approximately 10.08% improvement in overall classification accuracy. Furthermore, the impact of noise on the proposed methodology was investigated by introducing noise to the images, and the proposed methodologies maintained superior performance relative to the random selection approach on the noisy image dataset. CONCLUSION: The experimental results indicate that both supervised and unsupervised learning models performed effectively as feature extractors, and the deep learning framework significantly influenced the selection of training set samples. This study presents a novel approach for training sample selection in classification tasks and suggests the potential for extending the proposed method to image datasets and other types of datasets. Further exploration of this potential is warranted. © 2024 Society of Chemical Industry.

18.
Metab Brain Dis ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39034364

RESUMEN

Ginsenoside Rb1, known as gypenoside III, exerts antidepressant-like effects in previous studies. It has also been indicated that ginsenoside Rb1 regulated neuroinflammation via inhibiting NF-κB signaling. According to the evidence that astrocytes can regulate microglia and neuroinflammation by secreting complement C3, the present study aimed to demonstrate the molecular mechanisms underlying ginsenoside Rb1-induced antidepressant-like effects from the astrocytic and microglial complement C3 pathway. The complement C3 mediated mechanism of ginsenoside Rb1 was investigated in mice exposed to chronic restraint stress (CRS). The results showed that ginsenoside Rb1 reversed the depressive-like behaviors in CRS. Treatment with ginsenoside Rb1 reduced both the number of astrocytes and microglia. In addition, ginsenoside Rb1 suppressed TLR4/NF-κB/C3 signaling in the astrocytes of the hippocampus. Furthermore, ginsenoside Rb1 attenuated the contents of synaptic protein including synaptophysin and PSD95 in microglia, suggesting the inhibition of microglia-mediated synaptic elimination caused by CRS. Importantly, ginsenoside Rb1 also maintained the dendritic spines in mice. In conclusion, our results demonstrate that ginsenoside Rb1 produces the antidepressant-like effects by inhibiting astrocyte TLR4/NF-κB/C3 signaling to covert microglia from a pro-inflammatory phenotype (amoeboid) towards an anti-inflammatory phenotype (ramified), which inhibit the synaptic pruning in the hippocampus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...