Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.374
Filtrar
1.
Sensors (Basel) ; 24(13)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-39001056

RESUMEN

In the process of metal wire and additive manufacturing, due to changes in temperature, humidity, current, voltage, and other parameters, as well as the failure of machinery and equipment, a failure may occur in the manufacturing process that seriously affects the current situation of production efficiency and product quality. Based on the demand for monitoring of the key impact parameters of additive manufacturing, this paper develops a parameter monitoring and prediction system for the additive manufacturing feeding process to provide a basis for future fault diagnosis. The fault diagnosis and prediction system for metal wire supply and additive manufacturing utilizes STM 32 as its core, enabling the capture and transmission of temperature, humidity, current, and voltage data. The upper computer system, designed on the LabVIEW 2019 virtual instrument platform, incorporates an LSTM neural network model and facilitates a connection between LabVIEW and MATLAB 2019 to achieve the prediction function. The monitoring and prediction system established in this study is intended to provide basic research assistance in the field of fault diagnosis.

2.
iScience ; 27(6): 109393, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38952679

RESUMEN

The prediction of drug-target interactions (DTIs) is a critical phase in the sustainable drug development process, especially when the research focus is to capitalize on the repositioning of existing drugs. Computational approaches to predicting DTIs can provide important insights into drug mechanisms of action. However, current methods for predicting DTIs based on the structural information of the knowledge graph may suffer from the sparseness and incompleteness of the knowledge graph and neglect the latent type information of the knowledge graph. In this paper, we propose TTModel, a knowledge graph embedding model for DTI prediction. By exploiting biomedical text and type information, TTModel can learn latent text semantics and type information to improve the performance of representation learning. Comprehensive experiments on two public datasets demonstrate that our model outperforms the state-of-the-art methods significantly on the task of DTI prediction.

3.
J Colloid Interface Sci ; 674: 791-804, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38955010

RESUMEN

Selective oxidation of sulfur mustard gas (HD) to non-toxic sulfoxide by the visible-light-catalyzed generation of singlet oxygen (1O2) is a promising degradation strategy. Although PCN-224 can absorb visible light, it suffers from rapid electron-hole recombination and low redox capacity, which limits the performance of HD degradation. Titanium dioxide (TiO2) is an excellent photocatalyst but it lacks visible-light-activity in degrading HD. In this study, PCN-224@TiO2 heterojunction with S-type core-shell structure was synthesized by in-situ growth method to prolong the visible light absorption capacity of TiO2 and inhibit the rapid recombination of PCN-224. The interface formation and internal electric field were optimized by adjusting the Zr/Ti ratio to enhance the charge transfer, redox capacity, electron-hole separation, and visible light absorption. In this study, the formation of heterojunction composites based on Zr-O-Ti linkages is demonstrated by a series of characterization methods. It is demonstrated by experiments and theoretical calculations that PCN-224@TiO2 can generate nearly 100 % 1O2 under visible light conditions without a sacrificial agent, resulting in efficient and selective oxidation of 2-chloroethyl ethyl sulfide (CEES), a simulant of HD, to non-toxic sulfoxide form.

4.
Front Immunol ; 15: 1391848, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38983856

RESUMEN

Background: For Rheumatoid Arthritis (RA), a long-term chronic illness, it is essential to identify and describe patient subtypes with comparable goal status and molecular biomarkers. This study aims to develop and validate a new subtyping scheme that integrates genome-scale transcriptomic profiles of RA peripheral blood genes, providing a fresh perspective for stratified treatments. Methods: We utilized independent microarray datasets of RA peripheral blood mononuclear cells (PBMCs). Up-regulated differentially expressed genes (DEGs) were subjected to functional enrichment analysis. Unsupervised cluster analysis was then employed to identify RA peripheral blood gene expression-driven subtypes. We defined three distinct clustering subtypes based on the identified 404 up-regulated DEGs. Results: Subtype A, named NE-driving, was enriched in pathways related to neutrophil activation and responses to bacteria. Subtype B, termed interferon-driving (IFN-driving), exhibited abundant B cells and showed increased expression of transcripts involved in IFN signaling and defense responses to viruses. In Subtype C, an enrichment of CD8+ T-cells was found, ultimately defining it as CD8+ T-cells-driving. The RA subtyping scheme was validated using the XGBoost machine learning algorithm. We also evaluated the therapeutic outcomes of biological disease-modifying anti-rheumatic drugs. Conclusions: The findings provide valuable insights for deep stratification, enabling the design of molecular diagnosis and serving as a reference for stratified therapy in RA patients in the future.


Asunto(s)
Artritis Reumatoide , Perfilación de la Expresión Génica , Transcriptoma , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/diagnóstico , Humanos , Antirreumáticos/uso terapéutico , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Biomarcadores , Linfocitos T CD8-positivos/inmunología
5.
mSystems ; : e0030724, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38980055

RESUMEN

Microbial immigration is an ecological process in natural environments; however, the ecological trade-off mechanisms that govern the balance between species extinction and migration are still lacking. In this study, we investigated the mechanisms underlying the migration of diazotrophic communities from soil to leaves across six natural mangrove habitats in southern China. The results showed that the diazotrophic alpha and beta diversity exhibited significant regional and locational variations. The diazotrophic species pool gradually increased from the leaves to nonrhizosphere soil at each site, exhibiting a vertical distribution pattern. Mantel test analyses suggested that climate factors, particularly mean annual temperature, significantly influenced the structure of the diazotrophic community. The diazotrophic community assembly was mainly governed by dispersal limitation in soil and root samples, whereas dispersal limitation and ecological drift were dominant in leaves. Partial least squares path modeling revealed that the species pool and soil properties, particularly the oxidation-reduction potential and pH, were closely linked to the species-immigration ratio of diazotrophic communities. Our study provides novel insights for understanding the ecological trait diversity patterns and spread pathways of functional microbial communities between below- and aboveground habitats in natural ecosystems.IMPORTANCEEnvironmental selection plays key roles in microbial transmission. In this study, we have provided a comprehensive framework to elucidate the driving patterns of the ecological trade-offs in diazotrophic communities across large-scale mangrove habitats. Our research revealed that Bradyrhizobium japonicum, Marinobacterium lutimaris, and Agrobacterium tumefaciens were more abundant in root-associated soil than in leaves by internal and external pathways. The nonrhizospheric and rhizospheric soil samples harbored the most core amplicon sequence variants, indicating that these dominant diazotrophs could adapt to broader ecological niches. Correlation analysis indicated that the diversities of the diazotrophic community were regulated by biotic and abiotic factors. Furthermore, this study found a lower species immigration ratio in the soil than in the leaves. Both species pool and soil properties regulate the species-immigration mechanisms of the diazotrophic community. These results suggest that substantial species immigration is a widespread ecological process, leading to alterations in local community diversity across diverse host environments.

6.
Patient Prefer Adherence ; 18: 1435-1441, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38988506

RESUMEN

Background: Diabetic kidney disease (DKD) patients require comprehensive disease education and mutual support to cope with various challenges. Social media platforms provide opportunities for DKD patients to access information and interact with peers. However, qualitative analysis of DKD patients' real-world concerns and needs on social media is lacking. Methods: A qualitative study was conducted to analyze DKD patients' posts on Facebook and Baidu DKD-specific forums from June 2013 to June 2023. Posts were retrieved, and the forum with the most DKD-related posts from each platform was selected using stratified random sampling. Thematic analysis was performed to identify common themes, which were categorized and quantified. Results: In total, 746 DKD-related posts were analyzed, generating 203 keyword categories with 954 tags. Three main themes emerged: Diagnosis and Comorbidities (50.2%), Treatment and Prevention (29.7%), and Lifestyle and Psychology (20.1%). Patients were most concerned about DKD diagnosis, staging, comorbidities, and interpreting diagnostic indicators. They also sought information on treatment advancements, medications, renal replacement therapies, and traditional Chinese medicine. Diet, exercise, work-life balance, family planning, and mental well-being were key lifestyle and psychological concerns. Conclusion: This study reveals DKD patients' primary needs and concerns on social media, which can guide healthcare professionals in providing targeted education and support. Meeting patients' needs through comprehensive education and counseling can improve treatment adherence and prognosis, though challenges remain in addressing all issues in real-world practice.

7.
Phys Rev Lett ; 132(25): 253401, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38996274

RESUMEN

In multistate non-Hermitian systems, higher-order exceptional points and exotic phenomena with no analogues in two-level systems arise. A paradigm is the exceptional nexus (EX), a third-order EP as the cusp singularity of exceptional arcs (EAs), that has a hybrid topological nature. Using atomic Bose-Einstein condensates to implement a dissipative three-state system, we experimentally realize an EX within a two-parameter space, despite the absence of symmetry. The engineered dissipation exhibits density dependence due to the collective atomic response to resonant light. Based on extensive analysis of the system's decay dynamics, we demonstrate the formation of an EX from the coalescence of two EAs with distinct geometries. These structures arise from the different roles played by dissipation in the strong coupling limit and quantum Zeno regime. Our Letter paves the way for exploring higher-order exceptional physics in the many-body setting of ultracold atoms.

8.
Carbohydr Polym ; 342: 122385, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39048226

RESUMEN

The rise of polymer materials in modern life has drawn attention to renewable, easily biodegradable, environmentally-friendly bio-based polymers. Notably, significant research has been dedicated to creating green antimicrobial functional materials for the biomedical field using natural polymer materials. Cellulose is a rich natural biomass organic polymer material. Given its favorable attributes like film-forming capability, biodegradability, and biocompatibility, it is extensively employed to tackle a wide range of challenges confronting humanity today. However, its inherent drawbacks, such as insolubility in water and most organic solvents, hygroscopic nature, difficulty in melting, and limited antimicrobial properties, continue to pose challenges for realizing the high-value applications of cellulose. Achieving multifunctionality and more efficient application of cellulose still poses major challenges. In this regard, the current development status of cellulose materials was reviewed, covering the classification, preparation methods, and application status of cellulose-based antimicrobial materials. The application value of cellulose-based antimicrobial materials in biomedicine, textiles, food packaging, cosmetics and wastewater treatment was summarised. Finally, insights were provided into the developing prospects of cellulose-based antimicrobial materials were provided.


Asunto(s)
Antiinfecciosos , Celulosa , Celulosa/química , Antiinfecciosos/química , Antiinfecciosos/farmacología , Humanos , Embalaje de Alimentos/métodos , Textiles , Cosméticos/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
9.
Artículo en Inglés | MEDLINE | ID: mdl-39051622

RESUMEN

The clearance of urea poses a formidable challenge, and its excessive accumulation can cause various renal diseases. Urease demonstrates remarkable efficacy in eliminating urea, but cannot be reused. This study aimed to develop a composite vector system comprising microcrystalline cellulose (MCC) immobilized with urease and metal-organic framework (MOF) UiO-66-NH2, denoted as MCC@UiO/U, through the dynamic defect generation strategy. By utilizing competitive coordination, effective immobilization of urease into MCC@UiO was achieved for efficient urea removal. Within 2 h, the urea removal efficiency could reach up to 1500 mg/g, surpassing an 80% clearance rate. Furthermore, an 80% clearance rate can also be attained in peritoneal dialyzate from patients. MCC@UiO/U also exhibits an exceptional bioactivity even after undergoing 5 cycles of perfusion, demonstrating remarkable stability and biocompatibility. This innovative approach and methodology provide a novel avenue and a wide range of immobilized enzyme vectors for clinical urea removal and treatment of kidney diseases, presenting immense potential for future clinical applications.

11.
J Orthop Sci ; 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39054230

RESUMEN

BACKGROUND: This study aimed to introduce a potential alternative percutaneous treatment for AO types C1, C2, and C3 distal radius fractures using dual-external fixator (a no-bridging cemented-pin frame and a conventional wrist-bridging external fixator). MATERIALS AND METHODS: From January 2018 to January 2021, 52 patients (52 distal radius fractures) were treated with dual-external fixator. For comparison, 61 patients (61 distal radius fractures) were treated with a plate and screw system. Wrist function was assessed using the Mayo Wrist Score. Patient satisfaction was assessed using the Short Assessment of Patient Satisfaction. A P < 0.05 was considered statistically significant. RESULTS: Fracture healing was achieved in all patients. At the final follow-up of 29 months (range, 24-34 months) vs 36 months (range, 26-39 months) (P > 0.05), the patients treated with dual-external fixator and a plate and screw system achieved mean ulnar deviations of 31° vs 29° (P < 0.05), mean Mayo Wrist Scores of 91.12 ± 5.98 vs 88.12 ± 7.54 (P < 0.05), and mean patient satisfaction scores of 23.42 ± 2.47 vs 23.04 ± 2.32 (P > 0.05). CONCLUSIONS: AO types C1, C2, and C3 distal radius fractures can be treated successfully using dual-external fixator. The technique is a potential alternative in addition to the conventional treatments. LEVEL OF EVIDENCE: Level IIa.

12.
Sci Total Environ ; 948: 174737, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004365

RESUMEN

In recent years, there has been a growing focus on the toxicity and mortality induced by nanoplastics (NPs) in aquatic organisms. However, studies investigating mechanisms underlying oxidative stress (OS), apoptosis, and inflammation induced by NPs in fish remain limited. This study observed that polystyrene NPs (PS-NPs) were accumulated into zebrafish larvae and zebrafish embryonic fibroblast (ZF4 cells), accompanied by the occurrence of pathological damage both at the cellular and tissue-organ level. Additionally, the transcriptional up-regulation of NADPH oxidases (NOXs) and subsequent excessive generation of reactive oxygen species (ROS) resulted in notable changes in the relative mRNA and protein expression levels associated with antioxidant oxidase systems in larvae. Furthermore, the study identified the impact of NPs on mitochondrial ultrastructural, resulting in mitochondrial depolarization and downregulation of mRNA expression related to the electron transport chain due to excessive ROS generation. Short-term exposure to NPs also triggered apoptosis and inflammation in zebrafish larvae, evident from significant up-regulation in mRNA expressions of proapoptotic factors and NF-κB proinflammatory signaling pathway, as well as increased transcription and protein levels of pro-inflammatory factors in larvae. Inhibition of intracellular excessive ROS effectively reduced the induction of apoptosis, NF-κB P65 nuclear migration levels, and cytokine secretion, underscoring OS as a pivotal factor throughout the process of apoptosis and inflammatory responses induced by NPs. This research significantly advances our comprehension of biological effects and underlying mechanisms of NPs in freshwater fish.

13.
Poult Sci ; 103(9): 104014, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39032308

RESUMEN

Two trials were conducted to draw the phase-response curve of productive and immunological variables in heat-exposed layer chickens at different ages (71 to 130 d, and 211 to 270 d). Birds were acclimated to the following conditions for 60 d: constant optimal ambient temperature at 24°C and high ambient temperature at 34°C for 8 h/d (10:00-18:00). Data collection and biochemical measurements were performed every 10 d. In both age ranges, high temperature favored the innate immunity (P < 0.01) at the cost of performance (P < 0.05) during a given period, including the relative abundance of B and T-helper lymphocytes, lymphocyte proliferation ratio (B and T lymphocytes), and serum immunoglobulin contents (IgG and IgM) in the peripheral blood, as well as splenic expression of inflammation-related genes (iNOS, TLR-4, TNF-α, IL-6, and INF-γ). Compared with laying hens, growing pullets showed a time-delayed activation of immune response following heat challenge, and had no immunosuppression up to the end of exposure. Overall, the immune system of layer birds has a trade-off with production tissues in a hot environment, and exhibits distinct age-range-specific responses of acclimatization.

14.
J Trace Elem Med Biol ; 85: 127496, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39032317

RESUMEN

BACKGROUND: The essential mineral elements play important roles in proper growth, development and maintenance of physiological homeostasis of an organism. Women are at greater risk of mineral deficiency during pregnancy. However, the predictors of mineral element levels in pregnant women remain unclear. This study was conducted to determine the urinary levels of calcium (Ca), iron (Fe), copper (Cu), manganese (Mn) and selenium (Se) in women during early pregnancy and to explore the predictors of urinary exposure to each mineral element and high co-exposure to mineral element mixture. METHODS: 298 pregnant women in first trimester were recruited when they attended antenatal care in a hospital in Jinan, Shandong Province, China. We collected their spot urine samples and questionnaire data on their sociodemographic characteristics, lifestyle habits, food and dietary supplement intake, and residential environment. The concentrations of Ca, Fe, Cu, Mn and Se in all urine samples were measured. LASSO regression, multiple linear regression and binary logistic regression were used to analyze the predictors affecting mineral element levels. RESULTS: The geometric means of creatinine-corrected Ca, Fe, Cu, Mn and Se concentrations were 99.37 mg/g, 1.75 µg/g, 8.97 µg/g, 0.16 µg/g and 16.83 µg/g creatinine, respectively. Factors that influenced the concentrations of individual mineral element were as follows: (1) Se and Ca concentrations increased with maternal age; (2) women taking tap water as family drinking water had higher Ca levels and those taking polyunsaturated fatty acids intermittently had higher Cu levels; (3) Fe was adversely related to consumption frequency of barbecued foods; (4) Pregnant women with more frequent consumption of shellfish/shrimp/crab and living near green spaces or parks had higher Mn exposure, and those with higher frequency of meat consumption had lower Mn exposure. In addition, maternal age and the frequency of egg consumption were associated with odds of exposure to a mixture of high Ca, Fe, Cu and Se. CONCLUSIONS: The pregnant women in this study had comparable concentrations of urinary Cu and Se but lower concentrations of Ca, Fe and Mn compared with those in other areas. Predictors of urinary mineral elements included maternal age (Se and Ca), type of domestic drinking water (Ca), consumption frequency of barbecued food (Fe), polyunsaturated fatty acid use (Cu), the presence of urban green spaces or parks near the home and frequency of meat and shellfish/shrimp/crab intake (Mn). Moreover, maternal age and egg consumption frequency were significant predictors of high-level co-exposure to urinary Ca, Fe, Cu and Se.

15.
Water Res ; 262: 122105, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39032336

RESUMEN

Synergistic actions of peroxides and high-valent metals have garnered increasing attentions in wastewater treatment. However, how peroxides interact with the reactive metal species to enhance the reactivity remains unclear. Herein, we report the synergistic oxidation of peracetic acid (PAA) and permanganate(Ⅶ) towards micropollutants, and revisit the underlying mechanism. The PAA-Mn(VII) system showed remarkable efficiency with a 28-fold enhancement on sulfamethoxazole (SMX) degradation compared to Mn(Ⅶ) alone. Extensive quenching experiments and electron spin resonance (ESR) analysis revealed the generation of unexpected Mn(V) and Mn(VI) beyond Mn(III) in the PAA-Mn(VII) system. The utilization efficiency of Mn intermediates was quantified using 2,2'-azino-bis(3-ethylbenzothiazoline)-6-sulfonate (ABTS), and the results indicated that PAA could enhance the electron transfer efficiency of reactive manganese (Mn) species, thus accelerating the micropollutant degradation. Density functional theory (DFT) calculations showed that Mn intermediates could coordinate to the O1 of PAA with a low energy gap, enhancing the oxidation capacity and stability of Mn intermediates. A kinetic model based on first principles was established to simulate the time-dependent concentration profiles of the PAA-Mn complexes and quantify the contributions of the PAA-Mn(III) complex (50.8 to 59.3 %) and the PAA-Mn(Ⅴ/Ⅵ) complex (40.7 to 49.2 %). The PAA-Mn(VII) system was resistant to the interference from complex matrix components (e.g., chloride and humic acid), leading to the high efficiency in real wastewater. This work provides new insights into the interaction of PAA with reactive manganese species for accelerated oxidation of micropollutants, facilitating its application in wastewater treatment.

16.
Environ Pollut ; : 124586, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39033841

RESUMEN

The practical application of Cu(II)-catalyzed Fenton-like reaction (Cu(II)/H2O2) exhibits a low efficiency in the degradation of refractory compounds of wastewater. The impact of chloride ions (Cl-) on Fenton-like reactions have been investigated, but the influence mechanism is still unclear. Herein, the presence of Cl- (5 mM) significantly accelerated the degradation of benzoic acid (BA) under neutral conditions. The degradation of BA follows pseudo-first-order kinetics, with a degradation rate 7.3 times higher than the Cu(II)/H2O2 system. Multiple evidences strongly demonstrated that this reaction enables the production of reactive chlorine species (RCS) rather than HO• and high-valent copper (Cu(III)). The kinetic model revealed that Cl- could shift reactive species from the key intermediate (Cu(III)-chloro complexes) to RCS. Dichlorine radicals (Cl2•-) was discovered to play a crucial role in BA degradation, which was largely overlooked in previous reports. Although the reaction rate of Cl2•- with BA (k = 2.0 × 106 M-1 s-1) is lower than that of other species, its concentration is 10 orders of magnitude higher than that of Cu(III) and HO•. Furthermore, the exceptional efficacy of the Cu(II)/H2O2 system in BA degradation was observed in saline aquatic environments. This work sheds light on the previously unrecognized role of the metal-chloro complexes in production the RCS and water purification.

18.
Adv Sci (Weinh) ; : e2402368, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031576

RESUMEN

Current diabetic retinopathy (DR) treatment involves blood glucose regulation combined with laser photocoagulation or intravitreal injection of vascular endothelial growth factor (VEGF) antibodies. However, due to the complex pathogenesis and cross-interference of multiple biochemical pathways, these interventions cannot block disease progression. Recognizing the critical role of the retinal microenvironment (RME) in DR, it is hypothesized that reshaping the RME by simultaneously inhibiting primary and secondary blood-retinal barrier (BRB) injury can attenuate DR. For this, a glucose-responsive hydrogel named Cu-PEI/siMyD88@GEMA-Con A (CSGC) is developed that effectively delivers Cu-PEI/siMyD88 nanoparticles (NPs) to the retinal pigment epithelium (RPE). The Cu-PEI NPs act as antioxidant enzymes, scavenging ROS and inhibiting RPE pyroptosis, ultimately blocking primary BRB injury by reducing microglial activation and Th1 differentiation. Simultaneously, MyD88 expression silence in combination with the Cu-PEI NPs decreases IL-18 production, synergistically reduces VEGF levels, and enhances tight junction proteins expression, thus blocking secondary BRB injury. In summary, via remodeling the RME, the CSGC hydrogel has the potential to disrupt the detrimental cycle of cross-interference between primary and secondary BRB injury, providing a promising therapeutic strategy for DR.

19.
Chem Commun (Camb) ; 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39054891

RESUMEN

Four pillar-layered AIEgen-based MOFs exhibit higher thermal stability, tunable emission colors and improved QYs compared with that of non-pillar-layered AIEgen-based MOFs by confining the AIE ligands into layers. These results reveal that rationally manipulating AIE ligands into layers of pillar-layered MOFs is an effective strategy for the design and construction of tunable luminescent MOF systems.

20.
Sci Rep ; 14(1): 15294, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961120

RESUMEN

Reliability mapping of 5G low orbit constellation network slice is an important means to ensure link network communication. The problem of state space explosion is a typical problem. The deep reinforcement learning method is introduced. Under the 5G low orbit constellation integrated network architecture based on software definition network (SDN) and network function virtualization (NFV), the resource requirements and resource constraints of the virtual network function (VNF) are comprehensively considered to build the 5G low orbit constellation network slice reliability mapping model, and the reliability mapping model parameters are trained and learned by using deep reinforcement learning, solve the problem of state space explosion in the reliability mapping process of 5G low orbit constellation network slices. In addition, node backup and link backup strategies based on importance are adopted to solve the problem that VNF/link reliability is difficult to meet in the reliability mapping process of 5G low orbit constellation network slice. The experimental results show that this method improves the network throughput, packet loss rate and intra slice traffic of 5G low orbit constellation, and can completely repair network faults within 0.3 s; For different number of 5G low orbit constellation network slicing requests, the reliability of this method remains above 98%; For SFC with different lengths, the average network delay of this method is less than 0.15 s.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...