Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000042

RESUMEN

Recent studies have hinted at a potential link between Alzheimer's Disease (AD) and cancer. Thus, our study focused on finding genes common to AD and Liver Hepatocellular Carcinoma (LIHC), assessing their promise as diagnostic indicators and guiding future treatment approaches for both conditions. Our research utilized a broad methodology, including differential gene expression analysis, Weighted Gene Co-expression Network Analysis (WGCNA), gene enrichment analysis, Receiver Operating Characteristic (ROC) curves, and Kaplan-Meier plots, supplemented with immunohistochemistry data from the Human Protein Atlas (HPA) and machine learning techniques, to identify critical genes and significant pathways shared between AD and LIHC. Through differential gene expression analysis, WGCNA, and machine learning methods, we identified nine key genes associated with AD, which served as entry points for LIHC analysis. Subsequent analyses revealed IKBKE and HSPA1A as shared pivotal genes in patients with AD and LIHC, suggesting these genes as potential targets for intervention in both conditions. Our study indicates that IKBKE and HSPA1A could influence the onset and progression of AD and LIHC by modulating the infiltration levels of immune cells. This lays a foundation for future research into targeted therapies based on their shared mechanisms.


Asunto(s)
Enfermedad de Alzheimer , Carcinoma Hepatocelular , Biología Computacional , Proteínas HSP70 de Choque Térmico , Neoplasias Hepáticas , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Perfilación de la Expresión Génica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Aprendizaje Automático
2.
Proc Biol Sci ; 291(2025): 20240654, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38889789

RESUMEN

The morphology and biomechanics of infant crania undergo significant changes between the pre- and post-weaning phases due to increasing loading of the masticatory system. The aims of this study were to characterize the changes in muscle forces, bite forces and the pattern of mechanical strain and stress arising from the aforementioned forces across crania in the first 48 months of life using imaging and finite element methods. A total of 51 head computed tomography scans of normal individuals were collected and analysed from a larger database of 217 individuals. The estimated mean muscle forces of temporalis, masseter and medial pterygoid increase from 30.9 to 87.0 N, 25.6 to 69.6 N and 23.1 to 58.9 N, respectively (0-48 months). Maximum bite force increases from 90.5 to 184.2 N (3-48 months). There is a change in the pattern of strain and stress from the calvaria to the face during postnatal development. Overall, this study highlights the changes in the mechanics of the craniofacial system during normal development. It further raises questions as to how and what level of changes in the mechanical forces during the development can alter the morphology of the craniofacial system.


Asunto(s)
Fuerza de la Mordida , Cráneo , Lactante , Humanos , Fenómenos Biomecánicos , Cráneo/anatomía & histología , Preescolar , Tomografía Computarizada por Rayos X , Análisis de Elementos Finitos , Femenino , Masculino , Masticación , Adaptación Fisiológica , Recién Nacido , Estrés Mecánico , Músculos Masticadores/fisiología
3.
J Transl Med ; 22(1): 507, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802851

RESUMEN

BACKGROUND: Gastric cancer (GC) ranks fifth in global cancer incidence and third in mortality rate among all cancer types. Circular RNAs (circRNAs) have been extensively demonstrated to regulate multiple malignant biological behaviors in GC. Emerging evidence suggests that several circRNAs derived from FNDC3B play pivotal roles in cancer. However, the role of circFNDC3B in GC remains elusive. METHODS: We initially screened circFNDC3B with translation potential via bioinformatics algorithm prediction. Subsequently, Sanger sequencing, qRT-PCR, RNase R, RNA-FISH and nuclear-cytoplasmic fractionation assays were explored to assess the identification and localization of circ0003692, a circRNA derived from FNDC3B. qRT-PCR and ISH were performed to quantify expression of circ0003692 in human GC tissues and adjacent normal tissues. The protein-encoding ability of circ0003692 was investigated through dual-luciferase reporter assay and LC/MS. The biological behavior of circ0003692 in GC was confirmed via in vivo and in vitro experiments. Additionally, Co-IP and rescue experiments were performed to elucidate the interaction between the encoded protein and c-Myc. RESULTS: We found that circ0003692 was significantly downregulated in GC tissues. Circ0003692 had the potential to encode a novel protein FNDC3B-267aa, which was downregulated in GC cells. We verified that FNDC3B-267aa, rather than circ0003692, inhibited GC migration in vitro and in vivo. Mechanistically, FNDC3B-267aa directly interacted with c-Myc and promoted proteasomal degradation of c-Myc, resulting in the downregulation of c-Myc-Snail/Slug axis. CONCLUSIONS: Our study revealed that the novel protein FNDC3B-267aa encoded by circ0003692 suppressed GC metastasis through binding to c-Myc and enhancing proteasome-mediated degradation of c-Myc. The study offers the potential applications of circ0003692 or FNDC3B-267aa as therapeutic targets for GC.


Asunto(s)
Fibronectinas , Metástasis de la Neoplasia , Complejo de la Endopetidasa Proteasomal , Proteínas Proto-Oncogénicas c-myc , ARN Circular , Neoplasias Gástricas , Neoplasias Gástricas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Animales , Fibronectinas/metabolismo , Regulación Neoplásica de la Expresión Génica , Masculino , Proteolisis , Ratones Desnudos , Secuencia de Bases , Movimiento Celular/genética , Femenino , Ratones
4.
Orphanet J Rare Dis ; 19(1): 204, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38762603

RESUMEN

BACKGROUND: Trigonocephaly occurs due to the premature fusion of the metopic suture, leading to a triangular forehead and hypotelorism. This condition often requires surgical correction for morphological and functional indications. Metopic ridges also originate from premature metopic closure but are only associated with mid-frontal bulging; their surgical correction is rarely required. Differential diagnosis between these two conditions can be challenging, especially in minor trigonocephaly. METHODS: Two hundred seven scans of patients with trigonocephaly (90), metopic rigdes (27), and controls (90) were collected. Geometric morphometrics were used to quantify skull and orbital morphology as well as the interfrontal angle and the cephalic index. An innovative method was developed to automatically compute the frontal curvature along the metopic suture. Different machine-learning algorithms were tested to assess the predictive power of morphological data in terms of classification. RESULTS: We showed that control patients, trigonocephaly and metopic rigdes have distinctive skull and orbital shapes. The 3D frontal curvature enabled a clear discrimination between groups (sensitivity and specificity > 92%). Furthermore, we reached an accuracy of 100% in group discrimination when combining 6 univariate measures. CONCLUSION: Two diagnostic tools were proposed and demonstrated to be successful in assisting differential diagnosis for patients with trigonocephaly or metopic ridges. Further clinical assessments are required to validate the practical clinical relevance of these tools.


Asunto(s)
Craneosinostosis , Humanos , Craneosinostosis/diagnóstico por imagen , Craneosinostosis/patología , Craneosinostosis/diagnóstico , Femenino , Masculino , Lactante , Imagenología Tridimensional/métodos , Cráneo/diagnóstico por imagen , Cráneo/patología
5.
Artículo en Inglés | MEDLINE | ID: mdl-38587717

RESUMEN

Endovascular treatment has become the standard therapy for cerebral aneurysms, while the effective treatment for middle cerebral artery (MCA) bifurcation aneurysms remains a challenge. Current flow-diverting techniques with endovascular coils cover the aneurysm orifice as well as adjacent vessel branches, which may lead to branch occlusion. Novel endovascular flow disruptors, such as the Contour device (Cerus Endovascular), are of great potential to eliminate the risk of branch occlusion. However, there is a lack of valid comparison between novel flow disruptors and conventional (intraluminal) flow-diverters. In this study, two in silico MCA bifurcation aneurysm models were treated by specific Contour devices and flow-diverters using fast-deployment algorithms. Computational fluid dynamic simulations were used to examine the performance and efficiency of deployed devices. Hemodynamic parameters, including aneurysm inflow and wall shear stress, were compared among each Contour device, conventional flow-diverter, and untreated condition. Our results show that the placement of devices can effectively reduce the risk of aneurysm rupture, while the deployment of a Contour device causes more flow reduction than using flow-diverters (e.g. Silk Vista Baby). Besides, the Contour device presents the flow diversion capability of targeting the aneurysm neck without occluding the daughter vessel. In summary, the in silico aneurysm models presented in this study can serve as a powerful pre-planning tool for testing new treatment techniques, optimising device deployment, and predicting the performance in patient-specific aneurysm cases. Contour device is proved to be an effective treatment of MCA bifurcation aneurysms with less daughter vessel occlusion.

6.
Mol Cancer ; 23(1): 34, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360682

RESUMEN

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer with high aggressive phenotype and poor prognosis. Accumulating evidence suggests that circRNAs have been identified as pivotal mediators in cancers. However, the role of circRNAs in ccRCC progression remains elusive. METHODS: The differentially expressed circRNAs in 4 paired human ccRCC and adjacent noncancerous tissues ccRCC were screened using circRNA microarrays and the candidate target was selected based on circRNA expression level using weighted gene correlation network analysis (WGCNA) and the gene expression omnibus (GEO) database. CircPDHK1 expression in ccRCC and adjacent noncancerous tissues (n = 148) were evaluated along with clinically relevant information. RT-qPCR, RNase R digestion, and actinomycin D (ActD) stability test were conducted to identify the characteristics of circPDHK1. The subcellular distribution of circPDHK1 was analyzed by subcellular fractionation assay and fluorescence in situ hybridization (FISH). Immunoprecipitation-mass spectrometry (IP-MS) and immunofluorescence (IF) were employed to evaluate the protein-coding ability of circPDHK1. ccRCC cells were transfected with siRNAs, plasmids or lentivirus approach, and cell proliferation, migration and invasion, as well as tumorigenesis and metastasis in nude mice were assessed to clarify the functional roles of circPDHK1 and its encoded peptide PDHK1-241aa. RNA-sequencing, western blot analysis, immunoprecipitation (IP) and chromatin immunoprecipitation (ChIP) assays were further employed to identify the underlying mechanisms regulated by PDHK1-241aa. RESULTS: CircPDHK1 was upregulated in ccRCC tissues and closely related to WHO/ISUP stage, T stage, distant metastasis, VHL mutation and Ki-67 levels. CircPDHK1 had a functional internal ribosome entry site (IRES) and encoded a novel peptide PDHK1-241aa. Functionally, we confirmed that PDHK1-241aa and not the circPDHK1 promoted the proliferation, migration and invasion of ccRCC. Mechanistically, circPDHK1 was activated by HIF-2A at the transcriptional level. PDHK1-241aa was upregulated and interacted with PPP1CA, causing the relocation of PPP1CA to the nucleus. This thereby inhibited AKT dephosphorylation and activated the AKT-mTOR signaling pathway. CONCLUSIONS: Our data indicated that circPDHK1-encoded PDHK1-241aa promotes ccRCC progression by interacting with PPP1CA to inhibit AKT dephosphorylation. This study provides novel insights into the multiplicity of circRNAs and highlights the potential use of circPDHK1 or PDHK1-241aa as a therapeutic target for ccRCC.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Ratones , Humanos , Carcinoma de Células Renales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Circular/genética , Ratones Desnudos , Hibridación Fluorescente in Situ , Línea Celular Tumoral , Transducción de Señal/genética , Neoplasias Renales/genética , Serina-Treonina Quinasas TOR/metabolismo , Proliferación Celular/genética , Péptidos/genética , Regulación Neoplásica de la Expresión Génica , Proteína Fosfatasa 1/genética , Proteína Fosfatasa 1/metabolismo
7.
Transl Oncol ; 42: 101904, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38341962

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is the most prevalent kidney cancer, with a highly aggressive phenotype and poor prognosis. RNA binding proteins (RBPs) play crucial roles in post-transcriptional gene regulation and have been implicated in tumorigenesis. RBPs have the potential to become a new therapeutic target for ccRCC. In this study, we screened and validated that insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) as an RBP, was down-regulated in ccRCC tissues and cell lines. Functionally, we verified that IGF2BP2 significantly suppressed the migration and invasion ability of ccRCC in vitro and in vivo. Mechanistically, RIP-seq and actinomycin D experiments results showed that IGF2BP2 enhanced the expression of Creatine Kinase B (CKB) by binding to CKB mRNA and enhancing its mRNA stability. Thus, IGF2BP2 inhibited ccRCC metastasis through enhancing the expression of CKB. Taken together, these finding suggests that IGF2BP2 is a novel metastasis suppressor of ccRCC and may serve as a potential therapeutic target.

8.
Cells ; 13(2)2024 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-38247832

RESUMEN

Gastric cancer (GC) is the most common type of malignant tumor within the gastrointestinal tract, and GC metastasis is associated with poor prognosis. Polypyrimidine tract binding protein 1 (PTBP1) is an RNA-binding protein implicated in various types of tumor development and metastasis. However, the role of PTBP1 in GC metastasis remains elusive. In this study, we verified that PTBP1 was upregulated in GC tissues and cell lines, and higher PTBP1 level was associated with poorer prognosis. It was shown that PTBP1 knockdown in vitro inhibited GC cell migration, whereas PTBP1 overexpression promoted the migration of GC cells. In vivo, the knockdown of PTBP1 notably reduced both the size and occurrence of metastatic nodules in a nude mice liver metastasis model. We identified phosphoglycerate kinase 1 (PGK1) as a downstream target of PTBP1 and found that PTBP1 increased the stability of PGK1 by directly binding to its mRNA. Furthermore, the PGK1/SNAIL axis could be required for PTBP1's function in the promotion of GC cell migration. These discoveries suggest that PTBP1 could be a promising therapeutic target for GC.


Asunto(s)
Fosfoglicerato Quinasa , Proteína de Unión al Tracto de Polipirimidina , Neoplasias Gástricas , Animales , Ratones , Ratones Desnudos , ARN Mensajero/genética , Proteínas de Unión al ARN , Neoplasias Gástricas/genética , Humanos , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Fosfoglicerato Quinasa/genética
9.
Phys Chem Chem Phys ; 25(41): 28272-28281, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37830226

RESUMEN

In this study, we employ coarse-grained molecular dynamics simulations to explore the microstructure of MSA (methanesulfonic acid)-type electroplating solution, containing Sn(MSA)2 as the primary salt, MSA as the stabilizer, amphiphilic alkylphenol ethoxylate (APEO) as surfactants and cinnamaldehyde (CA) as the brightener agents, as well as water as the solvent. Our simulation indicates that temperature variations can significantly affect the structural properties of the electroplating solution and the adsorption behavior of its key components onto the substrate. Specifically, at low temperatures, the primary salt ions aggregate into ionic clusters, and the amphiphilic APEO surfactants and CA molecules form micelles composed of hydrophobic cores and hydrophilic shells, which reduces the uniformity of the solution and hinders the adsorption of ions, CA and surfactants onto the substrate. Appropriately increasing the temperature can weaken the aggregation of these components in bulk solution due to the accelerated molecular movements and arouse their adsorption. However, on further increasing the temperature, the elevated kinetic energy of the components thoroughly overwhelms the adsorption interactions, and therefore, the ions, surfactants, and CA desorb from the substrate and redissolve into the solution. We systematically analyze the complex interactions between these components at different temperatures and clarify the mechanism of the non-monotonic dependence of adsorption strength on the temperature at the molecular level. Our simulations demonstrate that there is low-temperature scope for reprocessing/recycling and intermediate-temperature scope for substrate-adsorptions of the key components. This study confers insights into a fundamental understanding of the microscopic mechanism for electroplating and can provide guidance for the development of precise electroplatings.

10.
Langmuir ; 39(34): 11946-11953, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37590920

RESUMEN

Two-dimensional (2D) transition-metal dichalcogenides (TMDs) have emerged as promising materials for surface-enhanced Raman scattering (SERS) due to their unique electronic, optical, and mechanical properties. In this Perspective, we briefly introduce the fundamental properties, crystal-phase configurations, and phase transition strategies of TMDs materials. We then discuss the importance of the crystal phase in determining the SERS effect of TMDs, highlighting recent advances in phase-engineering approaches to affording remarkable SERS performance. By considering the current challenges and future directions for improving the crystal-phase engineering of TMDs in SERS, we also offer new insights into the design and synthesis of more promising TMD-based SERS substrates.

11.
Science ; 381(6658): 648-653, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37561867

RESUMEN

The efficient, large-scale generation and control of photonic modes guided by van der Waals materials remains as a challenge despite their potential for on-chip photonic circuitry. We report three-atom-thick waveguides-δ waveguides-based on wafer-scale molybdenum disulfide (MoS2) monolayers that can guide visible and near-infrared light over millimeter-scale distances with low loss and an efficient in-coupling. The extreme thinness provides a light-trapping mechanism analogous to a δ-potential well in quantum mechanics and enables the guided waves that are essentially a plane wave freely propagating along the in-plane, but confined along the out-of-plane, direction of the waveguide. We further demonstrate key functionalities essential for two-dimensional photonics, including refraction, focusing, grating, interconnection, and intensity modulation, by integrating thin-film optical components with δ waveguides using microfabricated dielectric, metal, or patterned MoS2.

12.
J Mol Recognit ; 36(8): e3044, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37322568

RESUMEN

Mitochondria are the main sites of oxidative metabolism and energy release of sugars, fats and amino acids in the body. According to studies, malignant tumor occurrence and development have been linked to abnormal mitochondrial energy metabolism (MEM). However, the feasible role of abnormal MEM in colon adenocarcinoma (COAD) is poorly understood. In this work, we obtained COAD patient data from The Cancer Genome Atlas (TCGA) as the training set, and GSE103479 from Gene Expression Omnibus (GEO) as the validation set. Combined with the mitochondrial energy metabolic pathway (MEMP)-related genes in Kyoto Encyclopedia of Genes and Genomes (KEGG) database, a risk prognostic model was constructed by utilizing Cox regression analysis to identify 6 feature genes (CYP4A11, PGM2, PKLR, PPARGC1A, CPT2 and ACAT2) that were significantly associated with MEMP in COAD. By stratifying the samples based on riskscore, two distinct groups, namely the high- and low-risk groups, were identified. The model demonstrated accurate assessment of the prognosis risk in COAD patients and exhibited independent prognostic capability, as evidenced by the survival curve and receiver operating characteristic (ROC) curve analysis. A nomogram was plotted based on clinical information and riskscore. We proved it could predict the survival time of COAD patients effectively combined with the calibration curve of risk prediction. Subsequently, based on the immune evaluation and mutation frequency analysis performed on COAD patients, patients in high-risk group had observably higher immune scores, immune activity and PDCD1 expression level than low-risk group. In general, the prognostic model developed using MEMP-related genes served as a valuable biomarker for forecasting the prognosis of COAD patients, which offered a reference for the prognosis evaluation and clinical cure of COAD patients.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , Neoplasias del Colon/genética , Pronóstico , Relevancia Clínica , Adenocarcinoma/genética , Mitocondrias/genética
13.
J Transl Med ; 21(1): 402, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37340423

RESUMEN

BACKGROUND: Insulin like growth factor II mRNA binding protein 3 (IGF2BP3) is an RNA binding protein with multiple roles in regulation of gene expression at the post-transcriptional level and is implicated in tumorigenesis and progression of numerous cancers including gastric cancer (GC). Circular RNAs (circRNAs) are a diverse endogenous noncoding RNA population that have important regulatory roles in cancer. However, circRNAs that regulate the expression of IGF2BP3 in GC is largely unknown. METHODS: CircRNAs that bound to IGF2BP3 were screened in GC cells using RNA immunoprecipitation and sequencing (RIP-seq). The identification and localization of circular nuclear factor of activated T cells 3 (circNFATC3) were identified using Sanger sequencing, RNase R assays, qRT-PCR, nuclear-cytoplasmic fractionation and RNA-FISH assays. CircNFATC3 expression in human GC tissues and adjacent normal tissues were measured by qRT-PCR and ISH. The biological role of circNFATC3 in GC was confirmed by in vivo and in vitro experiments. Furthermore, RIP, RNA-FISH/IF, IP and rescue experiments were performed to uncover interactions between circNFATC3, IGF2BP3 and cyclin D1 (CCND1). RESULTS: We identified a GC-associated circRNA, circNFATC3, that interacted with IGF2BP3. CircNFATC3 was significantly overexpressed in GC tissues and was positively associated with tumor volume. Functionally, the proliferation of GC cells decreased significantly after circNFATC3 knockdown in vivo and in vitro. Mechanistically, circNFATC3 bound to IGF2BP3 in the cytoplasm, which enhanced the stability of IGF2BP3 by preventing ubiquitin E3 ligase TRIM25-mediated ubiquitination, thereby enhancing the regulatory axis of IGF2BP3-CCND1 and promoting CCND1 mRNA stability. CONCLUSIONS: Our findings demonstrate that circNFATC3 promotes GC proliferation by stabilizing IGF2BP3 protein to enhance CCND1 mRNA stability. Therefore, circNFATC3 is a potential novel target for the treatment of GC.


Asunto(s)
ARN Circular , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Ciclina D1/genética , Ciclina D1/metabolismo , ARN/genética , Estabilidad del ARN/genética , ARN Circular/genética , ARN Circular/metabolismo , Neoplasias Gástricas/patología , Ubiquitinación
14.
Sci Rep ; 13(1): 9641, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316540

RESUMEN

Knowledge of human craniofacial growth (increase in size) and development (change in shape) is important in the clinical treatment of a range of conditions that affects it. This study uses an extensive collection of clinical CT scans to investigate craniofacial growth and development over the first 48 months of life, detail how the cranium changes in form (size and shape) in each sex and how these changes are associated with the growth and development of various soft tissues such as the brain, eyes and tongue and the expansion of the nasal cavity. This is achieved through multivariate analyses of cranial form based on 3D landmarks and semi-landmarks and by analyses of linear dimensions, and cranial volumes. The results highlight accelerations and decelerations in cranial form changes throughout early childhood. They show that from 0 to 12 months, the cranium undergoes greater changes in form than from 12 to 48 months. However, in terms of the development of overall cranial shape, there is no significant sexual dimorphism in the age range considered in this study. In consequence a single model of human craniofacial growth and development is presented for future studies to examine the physio-mechanical interactions of the craniofacial growth.


Asunto(s)
Aceleración , Cráneo , Humanos , Preescolar , Cráneo/diagnóstico por imagen , Encéfalo , Ojo , Crecimiento y Desarrollo
15.
J Colloid Interface Sci ; 645: 55-65, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37146379

RESUMEN

Metal-organic frameworks (MOFs) have the advantages of controllable chemical properties, rich pore structures and reaction sites and are expected to be high-performance anode materials for the next generation of potassium-ion batteries (PIBs). However, due to the large radius of potassium ions, the pure MOF crystal structure is prone to collapse during ion insertion and processing, so its electrochemical performance is quite limited. In this work, a hollow carbon sphere-supported MOF-derived Co/CoSe heterojunction anode material for potassium-ion batteries was developed by a hydrothermal method. The anode has high potassium storage capacity (461.9 mA h/g after 200 cycles at 1 A/g), excellent cycling stability and superior rate performance. It is worth noting that the potassium ion storage capacity of the anode material shows a gradual upward trend with the charge-discharge cycle, which is 145.9 mA h/g after 3000 cycles at a current density of 10 A/g. This work demonstrates that MOF-derived CoSe anodes with high capacity and low cost may be promising candidates for the introduction of potassium ion storage.

16.
Polymers (Basel) ; 15(3)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36771908

RESUMEN

Inspired by the convex hull structure of the dung beetle head's surface, we extracted the non-smooth surface morphology of its head and designed a rubber bushing with a representative structure according to the bionics principle. According to the fitting results of the test data, Ogden N3-Prony N3 was selected as the hyper-viscoelastic constitutive model of the rubber material. Then, the two-direction (radial, axial) motion characteristics of the flexible friction pair in the rubber bushing were systematically analyzed from the aspects of stress, strain and thermal effect through the combination of numerical simulation and experimental research. Finally, the bionic design with the best drag reduction and wear resistance was determined.

17.
J Anat ; 242(6): 1172-1183, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36774197

RESUMEN

The use of non-destructive approaches for digital acquisition (e.g. computerised tomography-CT) allows detailed qualitative and quantitative study of internal structures of skeletal material. Here, we present a new R-based software tool, Icex, applicable to the study of the sizes and shapes of skeletal cavities and fossae in 3D digital images. Traditional methods of volume extraction involve the manual labelling (i.e. segmentation) of the areas of interest on each section of the image stack. This is time-consuming, error-prone and challenging to apply to complex cavities. Icex facilitates rapid quantification of such structures. We describe and detail its application to the isolation and calculation of volumes of various cranial cavities. The R tool is used here to automatically extract the orbital volumes, the paranasal sinuses, the nasal cavity and the upper oral volumes, based on the coordinates of 18 cranial anatomical points used to define their limits, from 3D cranial surface meshes obtained by segmenting CT scans. Icex includes an algorithm (Icv) for the calculation of volumes by defining a 3D convex hull of the extracted cavity. We demonstrate the use of Icex on an ontogenetic sample (0-19 years) of modern humans and on the fossil hominin crania Kabwe (Broken Hill) 1, Gibraltar (Forbes' Quarry) and Guattari 1. We also test the tool on three species of non-human primates. In the modern human subsample, Icex allowed us to perform a preliminary analysis on the absolute and relative expansion of cranial sinuses and pneumatisations during growth. The performance of Icex, applied to diverse crania, shows the potential for an extensive evaluation of the developmental and/or evolutionary significance of hollow cranial structures. Furthermore, being open source, Icex is a fully customisable tool, easily applicable to other taxa and skeletal regions.


Asunto(s)
Senos Paranasales , Cráneo , Animales , Cráneo/diagnóstico por imagen , Primates , Tomografía Computarizada por Rayos X , Cavidad Nasal
18.
ACS Appl Mater Interfaces ; 15(1): 1256-1264, 2023 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36594345

RESUMEN

Catalyzing polysulfide conversion is a promising way toward accelerating complex and sluggish sulfur redox reactions (SRRs) in lithium-sulfur batteries. Reasonable alteration of an enzyme provides a new means to expand the natural enzyme universe to catalytic reactions in abiotic systems. Herein, we design and fabricate a denatured hemocyanin (DHc) to efficiently catalyze the SRR. After denaturation, the unfolded ß-sheet architectures with exposed rich atomically dispersed Cu, O, and N sites and intermolecular H-bonds are formed in DHc, which not only provides the polysulfides for a strong spatial confinement effect in microenvironment via S-O and Li···N interactions but also activates chemical channels for electron/Li+ transport into the Cu active center via H/Li-bonds to catalyze polysulfide conversion. As expected, the charge/discharge kinetics of DHc-containing cathodes is fundamentally improved in cyclability with nearly 100% Coulombic efficiency and capacity even under high sulfur loading (4.3 mg cm-2) and lean-electrolyte (8 µL mg-1) conditions.

19.
Polymers (Basel) ; 16(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38201716

RESUMEN

Dual-component epoxy resins are widely used for bonding different materials in automotive interior processing. However, due to the complexity and variability of automotive interior parts, uneven temperature distribution on curved surfaces during the thermoforming process can lead to uneven thermal stress distribution, damaging the interior components. This study focuses on addressing the damage issues caused by uneven thermal stress distribution during the thermoforming of automotive interior components. By monitoring the temperature and strain on the adhesive surface of the interior components during processing, using sensors and combining the readings with a finite element simulation, damage to the adhesive during processing was simulated. Based on this, a segmented thermoforming method for the model surface was employed, but it was found that this method did not significantly reduce the level of damage to the adhesive during application. Building upon the segmented simulation, significant results were achieved by applying temperature modulation at a certain frequency to adjust the damage of the interior components during processing. The techniques used in this study successfully reduced the unevenness of the adhesive surface temperature, improved the performance of the adhesive during application through segmented optimization and the application of ultrasound-assisted techniques, and markedly reduced the manufacturing process's energy consumption.

20.
Polymers (Basel) ; 14(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36235896

RESUMEN

The basalt fibers (BF) and the basalt fibers etched by H2SO4 (BFH) were modified by polydopamine (PDA) or synergistically modified by PDA and silicon carbon black (SiCB). The effects of modified BF, BFH and SiCB on the basic mechanical properties and magnetorheological (MR) effects of natural rubber/butadiene rubber-based magnetorheological elastomer precursors (MREs) were investigated. The results show that the tensile strength, tear strength and stress at 300% strain of MREs/PDA-BFH-SiCB prepared with BFH synergistically modified by PDA and SiCB reach the maximum values, which are 9.58 MPa, 24.07 kN/m and 4.13 MPa, respectively. Additionally, its MR effect is more than three times higher than that of MREs before composite modification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...