RESUMEN
SUMMARY Primary pigmented nodular adrenocortical disease (PPNAD) is a rare adrenocorticotropin hormone (ACTH)-independent Cushing's syndrome (CS). Pediatric patients with PPNAD typically have unusual skin lesions and slow growth with unknown causes. We present a case of a female Chinese patient with PPNAD caused by the germline PRKACA gene copy number gain of chromosome 19. The patient initially presented with kidney stones, short stature, and obesity. After further testing, it was discovered that the patient had diabetes, mild hypertension, low bone mass, a low ACTH level, and hypercortisolemia, and neither the low-dose or high-dose dexamethasone suppression test was able to inhibit hematuric cortisol, which paradoxically increased. PPNAD was pathologically diagnosed after unilateral adrenalectomy. Chromosome microarrays and whole exon sequencing analyses of the peripheral blood, as well as testing of sectioned adrenal tissue, showed a rise in the copy number of the duplication-containing PRKACA gene on chromosome 19p13.13p13.12, a de novo but not heritable gene defect that causes disease. The clinical signs and symptoms supported the diagnosis of Carney complex (CNC). One significant mechanism of CNC pathogenesis may be the rise in germline PRKACA copy number of chromosome 19. When assessing PPNAD patients for CNC, the possibility of PRKACA gene amplification should be considered. The effect of PRKACA gene amplification on the clinical manifestations of CNC needs to be confirmed by more cases.
RESUMEN
Primary pigmented nodular adrenocortical disease (PPNAD) is a rare adrenocorticotropin hormone (ACTH)-independent Cushing's syndrome (CS). Pediatric patients with PPNAD typically have unusual skin lesions and slow growth with unknown causes. We present a case of a female Chinese patient with PPNAD caused by the germline PRKACA gene copy number gain of chromosome 19. The patient initially presented with kidney stones, short stature, and obesity. After further testing, it was discovered that the patient had diabetes, mild hypertension, low bone mass, a low ACTH level, and hypercortisolemia, and neither the low-dose or high-dose dexamethasone suppression test was able to inhibit hematuric cortisol, which paradoxically increased. PPNAD was pathologically diagnosed after unilateral adrenalectomy. Chromosome microarrays and whole exon sequencing analyses of the peripheral blood, as well as testing of sectioned adrenal tissue, showed a rise in the copy number of the duplication-containing PRKACA gene on chromosome 19p13.13p13.12, a de novo but not heritable gene defect that causes disease. The clinical signs and symptoms supported the diagnosis of Carney complex (CNC). One significant mechanism of CNC pathogenesis may be the rise in germline PRKACA copy number of chromosome 19. When assessing PPNAD patients for CNC, the possibility of PRKACA gene amplification should be considered. The effect of PRKACA gene amplification on the clinical manifestations of CNC needs to be confirmed by more cases.