Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377646

RESUMEN

The coexistence of valley polarization and topology has considerably facilitated the applications of 2D materials toward valleytronics device technology. However, isolated and distinct valleys are required to observe the valley-related quantum phenomenon. Herein, we report a new mechanism to generate in-plane magnetization direction-dependent isolated valley carriers by preserving or breaking the mirror symmetry in a 2D system. First-principle calculations are carried out on a prototype material, W2MnC2O2 MXene, to demonstrate the mechanism. A valley-coupled topological phase transition among Weyl semimetal, valley-polarized quantum anomalous Hall insulator, and topological semimetal is observed by manipulating the in-plane magnetization directions in W2MnC2O2. Monte Carlo simulations of W2MnC2O2 show that the estimated Curie temperature is around 170 K, indicating the possibility of observing valley-polarized topological states at higher temperatures. Our finding provides a generalized platform for investigating the valley and topological physics, which is extremely important for future quantum information processing applications.

2.
Phys Chem Chem Phys ; 25(36): 24625-24635, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37665598

RESUMEN

Using density functional theory (DFT), we investigated the energy-storage capabilities of a two-dimensional TiSe monolayer for applications of the anode material of Li/Na/K-ion batteries. The TiSe monolayer showed high thermodynamic stability at 800 K according to ab initio molecular dynamics (AIMD) simulation. The ion-diffusion barrier was estimated to be 0.29/0.36/0.33 eV for Li/Na/K, respectively, indicating the high-rate capacity of this material. The theoretical specific capacity was 422.63 mA h g-1 for Li/Na/K, with an energy density of 1000.19, 802.30, and 802.41 mW h g-1, respectively. Fully charged TiSe was mechanically stable according to the calculated elastic constants. Our results show that the TiSe monolayer could be used as an excellent anode material for Li/Na/K-ion batteries.

3.
J Phys Condens Matter ; 33(31)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34038889

RESUMEN

MXenes have attracted lots of attention because of the potential applications in electronic devices and energy storage. A variety of transition metals in MXenes give rise to distinct properties and trigger more interests. Depending on the exfoliation processes from the MAX phase, the surfaces of MXenes can be terminated by O, F, Cl, OH groups. Theoretical calculations reveal that the electronic properties of MXenes can be tuned by different surface terminations. For example, some F and O terminated MXenes are predicted to be topological insulators with the quantum spin hall states. In OH terminated MXene multilayers, the image potential states are close to the Fermi level. The energies of these states are sensitive to the interlayer distances. Consequently, the topology of the energy bands can be modulated. Here, based on the density functional theory, we study the electronic structures of the ordered double transition metal MXenes M'2M″2C3T2(where M' = V, Nb, Ta, M″ = Ti, Zr, Hf and T = F, Cl). We propose that these materials are topologically nontrivial insulators or semimetals. The topologicalZ2index is 1 and the presence of the conducting helical edge states is demonstrated. Their dynamical stabilities are confirmed by the phonon spectra. We expect that our prediction can facilitate the future application of MXenes as the topological insulating devices.

4.
J Phys Condens Matter ; 33(20)2021 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-33690184

RESUMEN

Using the first-principles calculations, we explore the nearly free electron (NFE) states in the transition-metal dichalcogenidesMX2(M= Mo, W;X= S, Se, Te) monolayers. It is found that both the external electric field and electron (not hole) injection can flexibly tune the energy levels of the NFE states, which can shift down to the Fermi level and result in novel transport properties. In addition, we find that the valley polarization can be induced by both electron and hole doping in MoTe2monolayer due to the ferromagnetism induced by the charge injection, which, however, is not observed in other five kinds ofMX2monolayers. We carefully check band structures of all theMX2monolayers, and find that the exchange splitting in the top of the valence band and the bottom of conduction band plays the key role in the ferromagnetism. Our researches enrich the electronic, spintronic, and valleytronic properties ofMX2monolayers.

5.
Sci Rep ; 4: 6037, 2014 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-25113125

RESUMEN

Steps and their associated adatoms extensively exist and play prominent roles in affecting surface properties of materials. Such impacts should be especially pronounced in two-dimensional, atomically-thin membranes like graphene. However, how single adatom behaves at monatomic steps of few-layer graphene is still illusive. Here, we report dynamics of individual adatom at monatomic steps of free-standing few-layer reduced graphene under the electron beam radiations, and demonstrate the prevalent existence of monatomic steps even down to unexpectedly ultrasmall lateral size of a circular diameter of ~5 Å. Single adatom prefers to stay at the edges of the atomic steps of few-layer reduced graphene and evolve with the steps. Moreover, we also find that how the single adatom behaves at atomic step edges can be remarkably influenced by the type of adatoms and step edges. Such single adatoms at monatomic steps and ultrasmall atomic steps open up a new window for surface physics and chemistry for graphene-based as well as other two-dimensional materials.

6.
J Chem Phys ; 140(23): 234702, 2014 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-24952555

RESUMEN

On the basis of density functional theory, we systematically investigate the electronic and magnetic properties of hybrid BN-C nanotubes, Cx(BN)y where x + y = 12, with and without an external electric field. The BN-C nanotubes are totally distinct from pristine boron-nitride and carbon nanotubes. The electronic properties of Cx(BN)y change significantly with composition: from the nonmagnetic semiconductors to the half-metals. The half-metallicity is attributed to the competition among the band gap, which is related to the width of C domain, the width of BN domain, and the intrinsic polarization field. Application of the external fields can enhance or counterbalance the polarization fields and change the band gaps. The half-metallicity can be modulated. In BN-rich tubes, such as C2(BN)10, the energy gap can be engineered from 0.50 eV to 0.95 eV and in C3(BN)9, the ground state is converted from the nonmagnetic state into the anti-ferro-magnetic one. In other tubes, the half-metallicity can be enhanced or destroyed by different external fields. The modulation indicates that hybrid BN-C nanotubes can work as the components of the spin-filter devices.

7.
J Phys Condens Matter ; 24(45): 455302, 2012 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-23085744

RESUMEN

The electronic properties of silicene zigzag nanoribbons with the presence of perpendicular fields are studied by using first-principles calculations and the generalized nearest neighboring approximation method. In contrast to the planar graphene, in silicene the Si atoms are not coplanar. As a result, by applying perpendicular fields to the two-dimensional silicene sheet, the on-site energy can be modulated and the band gap at the Dirac point is open. The buckled structure also creates a height difference between the two edges of the silicene zigzag nanoribbons. We find that the external fields can modulate the energies of spin-polarized edge states and their corresponding band gaps. Due to the polarization in the plane, the modulation effect is width dependent and becomes much more significant for narrow ribbons.

8.
J Phys Condens Matter ; 23(40): 405403, 2011 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-21937792

RESUMEN

We have performed a set of first-principles simulations to consider the possible phase transitions in molecular crystals of HCN under high pressure. Our calculations reveal several transition paths from the orthorhombic phase to tetragonal and then to triclinic phases. The transitions from the orthorhombic to the tetragonal phases are of the second order, whereas those from the tetragonal to the triclinic phases turn out to be of the first-order type and characterized by an abrupt decrease in volume. Our calculations show that, by adjustment of the temperature and pressure of the HCN molecular crystal, novel layered and polymeric crystals with insulating, semiconducting or metallic properties can be found. Based on our simulation results, two different crystal formation mechanisms are deduced. The stabilities of the predicted structures at ambient pressure are further assessed by performing phonon or MD simulations. In addition, the electron transport properties of the predicted polymers are obtained using the non-equilibrium Green's function technique combined with density functional theory. The results show that the polymers have metallic-like I-V characteristics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA