Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39155495

RESUMEN

The world is facing a global nutrition crisis, as evidenced by the rising incidence of metabolic disorders such as obesity, insulin resistance and chronic inflammation. Skeletal muscle is the largest tissue in humans and plays an important role in movement and host metabolism. Muscle fibre formation occurs mainly during the embryonic stage. Therefore, maternal lifestyle, especially nutrition and exercise during pregnancy, has a critical influence on foetal skeletal muscle development and the subsequent metabolic health of the offspring. In this review, the influence of maternal obesity, malnutrition and micronutrient intake on foetal skeletal muscle development is systematically summarized. We also aim to describe how maternal exercise shapes foetal muscle development and metabolic health in the offspring. The role of maternal gut microbiota and its metabolites on foetal muscle development is further discussed, although this field is still in its 'infancy'. This review will provide new insights to reduce the global crisis of metabolic disorders and highlight current gaps to promote further research.

2.
Bioresour Technol ; 388: 129753, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37696340

RESUMEN

The quorum quenching (QQ) strategy has attracted increasing attention in membrane bioreactor (MBR) fouling control. However, the applicable QQ strain remains limited. This study investigated the antibiofouling performance of a new indigenous QQ bacterium, Delftia sp. JL5 (JL5) in MBR. JL5 produces intracellular acylase that irreversibly degrades N-acylhomoserine lactones (AHL), inhibited biofilm formation of quorum-sensing bacteria from activated sludge. During 120 days of operation, immobilized JL5 substantially delayed MBR biofouling by 2.1 and 2.9 times, at a flux rate of 30 L/(m2·h) and 20 L/(m2·h), respectively. A slower flux rate was favorable for effective mitigation of JL5 biofouling. JL5 reduced the AHL and extracellular polymeric substances of biocake without affecting the efficiency of waste removal. The presence of JL5 significantly changed the microbial structure of the membrane biocake, but not the activated sludge. Collectively, high activity, durability, and acid tolerance credited JL5 as a promising strain for QQ-MBR.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA