Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Ecol Resour ; 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37873890

RESUMEN

Advances in sequencing technologies and declining costs are increasing the accessibility of large-scale biodiversity genomic datasets. To maximize the impact of these data, a careful, considered approach to data management is essential. However, challenges associated with the management of such datasets remain, exacerbated by uncertainty among the research community as to what constitutes best practices. As an interdisciplinary team with diverse data management experience, we recognize the growing need for guidance on comprehensive data management practices that minimize the risks of data loss, maximize efficiency for stand-alone projects, enhance opportunities for data reuse, facilitate Indigenous data sovereignty and uphold the FAIR and CARE Guiding Principles. Here, we describe four fictional personas reflecting differing user experiences with data management to identify data management challenges across the biodiversity genomics research ecosystem. We then use these personas to demonstrate realistic considerations, compromises and actions for biodiversity genomic data management. We also launch the Biodiversity Genomics Data Management Hub (https://genomicsaotearoa.github.io/data-management-resources/), containing tips, tricks and resources to support biodiversity genomics researchers, especially those new to data management, in their journey towards best practice. The Hub also provides an opportunity for those biodiversity researchers whose expertise lies beyond genomics and are keen to advance their data management journey. We aim to support the biodiversity genomics community in embedding data management throughout the research lifecycle to maximize research impact and outcomes.

2.
Mol Ecol Resour ; 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37712601

RESUMEN

The Aotearoa Genomic Data Repository (AGDR) is an initiative to provide a secure within-nation option for the storage, management and sharing of non-human genomic data generated from biological and environmental samples originating in Aotearoa New Zealand. This resource has been developed to follow the principles of Maori Data Sovereignty, and to enable the right of kaitiakitanga (guardianship), so that iwi, hapu and whanau (tribes, kinship groups and families) can effectively exercise their responsibilities as guardians over biological entities that they regard as taonga (precious or treasured). While the repository is designed to facilitate the sharing of data-making it findable by researchers and interoperable with data held in other genomic repositories-the decision-making process regarding who can access the data is entirely in the hands of those holding kaitiakitanga over each data set. No data are made available to the requesting researcher until the request has been approved, and the conditions for access (which can vary by data set) have been agreed to. Here we describe the development of the AGDR, from both a cultural perspective, and a technical one, and outline the processes that underpin its operation.

3.
Conserv Biol ; 37(4): e14061, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36704891

RESUMEN

Genetic diversity within species represents a fundamental yet underappreciated level of biodiversity. Because genetic diversity can indicate species resilience to changing climate, its measurement is relevant to many national and global conservation policy targets. Many studies produce large amounts of genome-scale genetic diversity data for wild populations, but most (87%) do not include the associated spatial and temporal metadata necessary for them to be reused in monitoring programs or for acknowledging the sovereignty of nations or Indigenous peoples. We undertook a distributed datathon to quantify the availability of these missing metadata and to test the hypothesis that their availability decays with time. We also worked to remediate missing metadata by extracting them from associated published papers, online repositories, and direct communication with authors. Starting with 848 candidate genomic data sets (reduced representation and whole genome) from the International Nucleotide Sequence Database Collaboration, we determined that 561 contained mostly samples from wild populations. We successfully restored spatiotemporal metadata for 78% of these 561 data sets (n = 440 data sets with data on 45,105 individuals from 762 species in 17 phyla). Examining papers and online repositories was much more fruitful than contacting 351 authors, who replied to our email requests 45% of the time. Overall, 23% of our email queries to authors unearthed useful metadata. The probability of retrieving spatiotemporal metadata declined significantly as age of the data set increased. There was a 13.5% yearly decrease in metadata associated with published papers or online repositories and up to a 22% yearly decrease in metadata that were only available from authors. This rapid decay in metadata availability, mirrored in studies of other types of biological data, should motivate swift updates to data-sharing policies and researcher practices to ensure that the valuable context provided by metadata is not lost to conservation science forever.


Importancia de la curación oportuna de metadatos para la vigilancia mundial de la diversidad genética Resumen La diversidad genética intraespecífica representa un nivel fundamental, pero a la vez subvalorado de la biodiversidad. La diversidad genética puede indicar la resiliencia de una especie ante el clima cambiante, por lo que su medición es relevante para muchos objetivos de la política de conservación mundial y nacional. Muchos estudios producen una gran cantidad de datos sobre la diversidad a nivel genético de las poblaciones silvestres, aunque la mayoría (87%) no incluye los metadatos espaciales y temporales asociados para que sean reutilizados en los programas de monitoreo o para reconocer la soberanía de las naciones o los pueblos indígenas. Realizamos un "datatón" distribuido para cuantificar la disponibilidad de estos metadatos faltantes y para probar la hipótesis que supone que esta disponibilidad se deteriora con el tiempo. También trabajamos para reparar los metadatos faltantes al extraerlos de los artículos asociados publicados, los repositorios en línea y la comunicación directa con los autores. Iniciamos con 838 candidatos de conjuntos de datos genómicos (representación reducida y genoma completo) tomados de la colaboración internacional para la base de datos de secuencias de nucleótidos y determinamos que 561 incluían en su mayoría muestras tomadas de poblaciones silvestres. Restauramos con éxito los metadatos espaciotemporales en el 78% de estos 561 conjuntos de datos (n = 440 conjuntos de datos con información sobre 45,105 individuos de 762 especies en 17 filos). El análisis de los artículos y los repositorios virtuales fue mucho más productivo que contactar a los 351 autores, quienes tuvieron un 45% de respuesta a nuestros correos. En general, el 23% de nuestras consultas descubrieron metadatos útiles. La probabilidad de recuperar metadatos espaciotemporales declinó de manera significativa conforme incrementó la antigüedad del conjunto de datos. Hubo una disminución anual del 13.5% en los metadatos asociados con los artículos publicados y los repositorios virtuales y hasta una disminución anual del 22% en los metadatos que sólo estaban disponibles mediante la comunicación con los autores. Este rápido deterioro en la disponibilidad de los metadatos, duplicado en estudios de otros tipos de datos biológicos, debería motivar la pronta actualización de las políticas del intercambio de datos y las prácticas de los investigadores para asegurar que en las ciencias de la conservación no se pierda para siempre el contexto valioso proporcionado por los metadatos.


Asunto(s)
Conservación de los Recursos Naturales , Metadatos , Humanos , Biodiversidad , Probabilidad , Variación Genética
4.
Mol Phylogenet Evol ; 176: 107584, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35843570

RESUMEN

Remote oceanic islands of the Pacific host elevated levels of actinopterygian (ray-finned fishes) endemism. Characterizing the evolutionary histories of these endemics has provided insight into the generation and maintenance of marine biodiversity in many regions. The subtropical islands of Lord Howe, Norfolk, and Rangitahua (Kermadec) in the Southwest Pacific are yet to be comprehensively studied. Here, we characterize the spatio-temporal diversification of marine fishes endemic to these Southwest Pacific islands by combining molecular phylogenies and the geographic distribution of species. We built Bayesian ultrametric trees based on open-access and newly generated sequences for five mitochondrial and ten nuclear loci, and using fossil data for time calibration. We present the most comprehensive phylogenies to date for marine ray-finned fish genera, comprising 34 species endemic to the islands, including the first phylogenetic placements for 11 endemics. Overall, our topologies confirm the species status of all endemics, including three undescribed taxa. Our phylogenies highlight the predominant affinity of these endemics with the Australian fish fauna (53%), followed by the East Pacific (15%), and individual cases where the closest sister taxon of our endemic is found in the Northwest Pacific and wider Indo-Pacific. Nonetheless, for a quarter of our focal endemics, their geographic affinity remains unresolved due to sampling gaps within their genera. Our divergence time estimates reveal that the majority of endemic lineages (67.6%) diverged after the emergence of Lord Howe (6.92 Ma), the oldest subtropical island in the Southwest Pacific, suggesting that these islands have promoted diversification. However, divergence ages of some endemics pre-date the emergence of the islands, suggesting they may have originated outside of these islands, or, in some cases, ages may be overestimated due to unsampled taxa. To fully understand the role of the Southwest Pacific subtropical islands as a 'cradle' for diversification, our study advocates for further regional surveys focused on tissue collection for DNA analysis.


Asunto(s)
Biodiversidad , Peces , Animales , Australia , Teorema de Bayes , Peces/genética , Filogenia
5.
Biol Rev Camb Philos Soc ; 97(4): 1511-1538, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35415952

RESUMEN

Biodiversity underlies ecosystem resilience, ecosystem function, sustainable economies, and human well-being. Understanding how biodiversity sustains ecosystems under anthropogenic stressors and global environmental change will require new ways of deriving and applying biodiversity data. A major challenge is that biodiversity data and knowledge are scattered, biased, collected with numerous methods, and stored in inconsistent ways. The Group on Earth Observations Biodiversity Observation Network (GEO BON) has developed the Essential Biodiversity Variables (EBVs) as fundamental metrics to help aggregate, harmonize, and interpret biodiversity observation data from diverse sources. Mapping and analyzing EBVs can help to evaluate how aspects of biodiversity are distributed geographically and how they change over time. EBVs are also intended to serve as inputs and validation to forecast the status and trends of biodiversity, and to support policy and decision making. Here, we assess the feasibility of implementing Genetic Composition EBVs (Genetic EBVs), which are metrics of within-species genetic variation. We review and bring together numerous areas of the field of genetics and evaluate how each contributes to global and regional genetic biodiversity monitoring with respect to theory, sampling logistics, metadata, archiving, data aggregation, modeling, and technological advances. We propose four Genetic EBVs: (i) Genetic Diversity; (ii) Genetic Differentiation; (iii) Inbreeding; and (iv) Effective Population Size (Ne ). We rank Genetic EBVs according to their relevance, sensitivity to change, generalizability, scalability, feasibility and data availability. We outline the workflow for generating genetic data underlying the Genetic EBVs, and review advances and needs in archiving genetic composition data and metadata. We discuss how Genetic EBVs can be operationalized by visualizing EBVs in space and time across species and by forecasting Genetic EBVs beyond current observations using various modeling approaches. Our review then explores challenges of aggregation, standardization, and costs of operationalizing the Genetic EBVs, as well as future directions and opportunities to maximize their uptake globally in research and policy. The collection, annotation, and availability of genetic data has made major advances in the past decade, each of which contributes to the practical and standardized framework for large-scale genetic observation reporting. Rapid advances in DNA sequencing technology present new opportunities, but also challenges for operationalizing Genetic EBVs for biodiversity monitoring regionally and globally. With these advances, genetic composition monitoring is starting to be integrated into global conservation policy, which can help support the foundation of all biodiversity and species' long-term persistence in the face of environmental change. We conclude with a summary of concrete steps for researchers and policy makers for advancing operationalization of Genetic EBVs. The technical and analytical foundations of Genetic EBVs are well developed, and conservation practitioners should anticipate their increasing application as efforts emerge to scale up genetic biodiversity monitoring regionally and globally.


Asunto(s)
Biodiversidad , Ecosistema , Conservación de los Recursos Naturales/métodos , Variación Genética , Humanos , Densidad de Población
6.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35042810

RESUMEN

The field of genomics has benefited greatly from its "openness" approach to data sharing. However, with the increasing volume of sequence information being created and stored and the growing number of international genomics efforts, the equity of openness is under question. The United Nations Convention of Biodiversity aims to develop and adopt a standard policy on access and benefit-sharing for sequence information across signatory parties. This standardization will have profound implications on genomics research, requiring a new definition of open data sharing. The redefinition of openness is not unwarranted, as its limitations have unintentionally introduced barriers of engagement to some, including Indigenous Peoples. This commentary provides an insight into the key challenges of openness faced by the researchers who aspire to protect and conserve global biodiversity, including Indigenous flora and fauna, and presents immediate, practical solutions that, if implemented, will equip the genomics community with both the diversity and inclusivity required to respectfully protect global biodiversity.


Asunto(s)
Pueblos Indígenas/genética , Difusión de la Información/ética , Biodiversidad , Genómica/métodos , Humanos , Pueblos Indígenas/psicología , Pueblos Indígenas/estadística & datos numéricos , Difusión de la Información/métodos , Grupos de Población/genética
7.
Nat Rev Genet ; 22(12): 791-807, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34408318

RESUMEN

The rapidly emerging field of macrogenetics focuses on analysing publicly accessible genetic datasets from thousands of species to explore large-scale patterns and predictors of intraspecific genetic variation. Facilitated by advances in evolutionary biology, technology, data infrastructure, statistics and open science, macrogenetics addresses core evolutionary hypotheses (such as disentangling environmental and life-history effects on genetic variation) with a global focus. Yet, there are important, often overlooked, limitations to this approach and best practices need to be considered and adopted if macrogenetics is to continue its exciting trajectory and reach its full potential in fields such as biodiversity monitoring and conservation. Here, we review the history of this rapidly growing field, highlight knowledge gaps and future directions, and provide guidelines for further research.


Asunto(s)
Variación Genética , Genética , Animales , Biodiversidad , Bases de Datos Genéticas , Técnicas Genéticas , Genética de Población , Humanos , Filogeografía , Flujo de Trabajo
8.
Ecol Evol ; 11(15): 10600-10612, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34367600

RESUMEN

Variation in both inter- and intraspecific traits affects community dynamics, yet we know little regarding the relative importance of external environmental filters versus internal biotic interactions that shape the functional space of communities along broad-scale environmental gradients, such as latitude, elevation, or depth. We examined changes in several key aspects of functional alpha diversity for marine fishes along depth and latitude gradients by quantifying intra- and interspecific richness, dispersion, and regularity in functional trait space. We derived eight functional traits related to food acquisition and locomotion and calculated seven complementary indices of functional diversity for 144 species of marine ray-finned fishes along large-scale depth (50-1200 m) and latitudinal gradients (29°-51° S) in New Zealand waters. Traits were derived from morphological measurements taken directly from footage obtained using Baited Remote Underwater Stereo-Video systems and museum specimens. We partitioned functional variation into intra- and interspecific components for the first time using a PERMANOVA approach. We also implemented two tree-based diversity metrics in a functional distance-based context for the first time: namely, the variance in pairwise functional distance and the variance in nearest neighbor distance. Functional alpha diversity increased with increasing depth and decreased with increasing latitude. More specifically, the dispersion and mean nearest neighbor distances among species in trait space and intraspecific trait variability all increased with depth, whereas functional hypervolume (richness) was stable across depth. In contrast, functional hypervolume, dispersion, and regularity indices all decreased with increasing latitude; however, intraspecific trait variation increased with latitude, suggesting that intraspecific trait variability becomes increasingly important at higher latitudes. These results suggest that competition within and among species are key processes shaping functional multidimensional space for fishes in the deep sea. Increasing morphological dissimilarity with increasing depth may facilitate niche partitioning to promote coexistence, whereas abiotic filtering may be the dominant process structuring communities with increasing latitude.

9.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34404731

RESUMEN

Genomic data are being produced and archived at a prodigious rate, and current studies could become historical baselines for future global genetic diversity analyses and monitoring programs. However, when we evaluated the potential utility of genomic data from wild and domesticated eukaryote species in the world's largest genomic data repository, we found that most archived genomic datasets (86%) lacked the spatiotemporal metadata necessary for genetic biodiversity surveillance. Labor-intensive scouring of a subset of published papers yielded geospatial coordinates and collection years for only 33% (39% if place names were considered) of these genomic datasets. Streamlined data input processes, updated metadata deposition policies, and enhanced scientific community awareness are urgently needed to preserve these irreplaceable records of today's genetic biodiversity and to plug the growing metadata gap.


Asunto(s)
Biodiversidad , Exactitud de los Datos , Eucariontes/genética , Variación Genética , Genoma , Genómica/métodos , Dinámica Poblacional
10.
Mol Ecol ; 30(11): 2477-2482, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33880812

RESUMEN

A recent Molecular Ecology editorial made a proactive statement of support for the "Nagoya Protocol" and the principle of benefit-sharing by requiring authors to provide a "Data Accessibility and Benefit-Sharing Statement" in their articles. Here, we encourage another step that enables Indigenous communities to provide their own definitions and aspirations for access and benefit-sharing alongside the author's "Statement". We invite the Molecular Ecology research community to use Biocultural-, Traditional Knowledge-, and Cultural Institution Notices to help Indigenous communities gain visibility within our research structures. Notices are one of the tools offered by the Biocultural Labels Initiative (part of the Local Contexts system) designed specifically for researchers and institutions. The Notices are highly visible, machine-readable icons that signal the Indigenous provenance of genetic resources, and rights of Indigenous communities to define the future use of genetic resources and derived benefits. The Notices invite collaboration with Indigenous communities and create spaces within our research systems for them to define the provenance, protocols, and permissions associated with genetic resources using Labels. Authors contributing to Molecular Ecology can apply Notices to their articles by providing the persistent unique identifier and an optional use-statement associated with the Notice in their "Data Accessibility and Benefit-Sharing Statement". In this way, our research community has an opportunity to accelerate support for the principles of the Nagoya Protocol, to alleviate concerns regarding Indigenous Data Sovereignty and equitable outcomes, and to build better relationships with Indigenous collaborators to enhance research, biodiversity, and conservation outcomes.


Asunto(s)
Biodiversidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA