Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Asunto principal
Intervalo de año de publicación
1.
Sci Robot ; 7(65): eabl6307, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35442701

RESUMEN

Current space exploration roadmaps envision exploring the surface geology of celestial bodies with robots for both scientific research and in situ resource utilization. In such unstructured, poorly lit, complex, and remote environments, automation is not always possible, and some tasks, such as geological sampling, require direct teleoperation aided by force-feedback (FF). The operator would be on an orbiting spacecraft, and poor bandwidth, high latency, and packet loss from orbit to ground mean that safe, stable, and transparent interaction is a substantial technical challenge. For this scenario, a control method was developed that ensures stability at high delay without reduction in speed or loss of positioning accuracy. At the same time, a new level of safety is achieved not only through FF itself but also through an intrinsic property of the approach preventing hard impacts. On the basis of this method, a tele-exploration scenario was simulated in the Analog-1 experiment with an astronaut on the International Space Station (ISS) using a 6-degree-of-freedom (DoF) FF capable haptic input device to control a mobile robot with manipulator on Earth to collect rock samples. The 6-DoF FF telemanipulation from space was performed at a round-trip communication delay constantly between 770 and 850 milliseconds and an average packet loss of 1.27%. This experiment showcases the feasibility of a complete space exploration scenario via haptic telemanipulation under spaceflight conditions. The results underline the benefits of this control method for safe and accurate interactions and of haptic feedback in general.


Asunto(s)
Robótica , Retroalimentación , Geología , Órbita , Planetas
2.
Front Robot AI ; 8: 611251, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34179105

RESUMEN

Certain telerobotic applications, including telerobotics in space, pose particularly demanding challenges to both technology and humans. Traditional bilateral telemanipulation approaches often cannot be used in such applications due to technical and physical limitations such as long and varying delays, packet loss, and limited bandwidth, as well as high reliability, precision, and task duration requirements. In order to close this gap, we research model-augmented haptic telemanipulation (MATM) that uses two kinds of models: a remote model that enables shared autonomous functionality of the teleoperated robot, and a local model that aims to generate assistive augmented haptic feedback for the human operator. Several technological methods that form the backbone of the MATM approach have already been successfully demonstrated in accomplished telerobotic space missions. On this basis, we have applied our approach in more recent research to applications in the fields of orbital robotics, telesurgery, caregiving, and telenavigation. In the course of this work, we have advanced specific aspects of the approach that were of particular importance for each respective application, especially shared autonomy, and haptic augmentation. This overview paper discusses the MATM approach in detail, presents the latest research results of the various technologies encompassed within this approach, provides a retrospective of DLR's telerobotic space missions, demonstrates the broad application potential of MATM based on the aforementioned use cases, and outlines lessons learned and open challenges.

3.
Front Robot AI ; 8: 716598, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35309724

RESUMEN

Applications for dexterous robot teleoperation and immersive virtual reality are growing. Haptic user input devices need to allow the user to intuitively command and seamlessly "feel" the environment they work in, whether virtual or a remote site through an avatar. We introduce the DLR Exodex Adam, a reconfigurable, dexterous, whole-hand haptic input device. The device comprises multiple modular, three degrees of freedom (3-DOF) robotic fingers, whose placement on the device can be adjusted to optimize manipulability for different user hand sizes. Additionally, the device is mounted on a 7-DOF robot arm to increase the user's workspace. Exodex Adam uses a front-facing interface, with robotic fingers coupled to two of the user's fingertips, the thumb, and two points on the palm. Including the palm, as opposed to only the fingertips as is common in existing devices, enables accurate tracking of the whole hand without additional sensors such as a data glove or motion capture. By providing "whole-hand" interaction with omnidirectional force-feedback at the attachment points, we enable the user to experience the environment with the complete hand instead of only the fingertips, thus realizing deeper immersion. Interaction using Exodex Adam can range from palpation of objects and surfaces to manipulation using both power and precision grasps, all while receiving haptic feedback. This article details the concept and design of the Exodex Adam, as well as use cases where it is deployed with different command modalities. These include mixed-media interaction in a virtual environment, gesture-based telemanipulation, and robotic hand-arm teleoperation using adaptive model-mediated teleoperation. Finally, we share the insights gained during our development process and use case deployments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...