Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mitochondrial DNA B Resour ; 9(8): 971-975, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091512

RESUMEN

Lemna turionifera is native to North America and northern Asia, with significant potential for industrial wastewater remediation. The complete nucleotide sequence of the L. turionifera chloroplast genome (cpDNA) was determined. The cpDNA is a circular molecule of 166,606 bp and containing a pair of inverted repeats (IRs) measuting 31,663 bp each. These IRs are flanked by a small single-copy region of 13,542 bp and a large single-copy region of 89,738 bp. The chloroplast genome of L. turionifera consisted of 112 unique genes, including 78 protein-encoding genes, 30 tRNA genes, and four rRNA genes. The phylogenetic analysis utilizing cpDNA provided a well-supported resolution of the relationships among subfamilies within the Araceae family. Our findings indicated a close relationship between L. turionifera and a clade consisting of L. minor, L. japonica, and L. gibba. The availability of the complete chloroplast genome sequence of L. turionifera presents valuable data for future phylogenetic investigations within the Lemnaceae family.

2.
Angew Chem Int Ed Engl ; : e202414506, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39214860

RESUMEN

The electrochemical reduction of CO2 to high-value carbon-based chemicals provides a sustainable approach to achieving an artificial carbon cycle. In the decade, metal-organic frameworks (MOFs), a kind of porous crystalline porous materials featuring well-defined structures, large surface area, high porosity, diverse components, easy tailorability, and controllable morphology, have attracted considerable research attention, serving as electrocatalysts to drive CO2 reduction. In this review, the reaction mechanisms of electrochemical CO2 reduction and the structure/component advantages of MOFs meeting the requirements of electrocatalysts for CO2 reduction are analyzed. After that, the representative progress for the precise fabrication of MOF-based electrocatalysts for CO2 reduction, focusing on catalytic site design and microenvironment modulation, are systemically summarized. Furthermore, the emerging applications and promising research for more practical scenarios related to electrochemical CO2 conversion are specifically proposed. Finally, the remaining challenges and future outlook of MOFs for electrochemical CO2 reduction are further discussed.

3.
Natl Sci Rev ; 11(6): nwae114, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38712324

RESUMEN

Although single-atom Cu sites exhibit high efficiency in CO2 hydrogenation to methanol, they are prone to forming Cu nanoparticles due to reduction and aggregation under reaction conditions, especially at high temperatures. Herein, single-atom Cu sites stabilized by adjacent Na+ ions have been successfully constructed within a metal-organic framework (MOF)-based catalyst, namely MOF-808-NaCu. It is found that the electrostatic interaction between the Na+ and Hδ- species plays a pivotal role in upholding the atomic dispersion of Cu in MOF-808-NaCu during CO2 hydrogenation, even at temperatures of up to 275°C. This exceptional stabilization effect endows the catalyst with excellent activity (306 g·kgcat-1·h-1), high selectivity to methanol (93%) and long-term stability at elevated reaction temperatures, far surpassing the counterpart in the absence of Na+ (denoted as MOF-808-Cu). This work develops an effective strategy for the fabrication of stable single-atom sites for advanced catalysis by creating an alkali-decorated microenvironment in close proximity.

4.
Mol Breed ; 44(4): 27, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38525006

RESUMEN

QuerySeed germination is a vital step in the life cycle of a plant, playing a significant role in seedling establishment and crop yield potential. It is also an important factor in the conservation of plant germplasm resources. This complex process is influenced by a myriad of factors, including environmental conditions, the genetic makeup of the seed, and endogenous hormones. The perception of these environmental signals triggers a cascade of intricate signal transduction events that determine whether a seed germinates or remains dormant. Despite considerable progress in uncovering the molecular mechanisms governing these processes, many questions remain unanswered. In this review, we summarize the current progress in the molecular mechanisms underlying the perception of environmental signals and consequent signal transduction during seed germination, and discuss questions that need to be addressed to better understand the process of seed germination and develop novel strategies for germplasm improvement.

5.
Angew Chem Int Ed Engl ; 63(2): e202314988, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38016926

RESUMEN

Singlet oxygen (1 O2 ) is ubiquitously involved in various photocatalytic oxidation reactions; however, efficient and selective production of 1 O2 is still challenging. Herein, we reported the synthesis of nickel porphyrin-based covalent organic frameworks (COFs) incorporating functional groups with different electron-donating/-withdrawing features on their pore walls. These functional groups established a dedicated outer-sphere microenvironment surrounding the Ni catalytic center that tunes the activity of the COFs for 1 O2 -mediated thioether oxidation. With the increase of the electron-donating ability of functional groups, the modulated outer-sphere microenvironment turns on the catalytic activity from a yield of nearly zero by the cyano group functionalized COF to an excellent yield of 98 % by the methoxy group functionalized one. Electronic property investigation and density-functional theory (DFT) calculations suggested that the distinct excitonic behaviors attributed to the diverse band energy levels and orbital compositions are responsible for the different activities. This study represents the first regulation of generating reactive oxygen species (ROS) based on the strategy of outer-sphere microenvironment modulation in COFs.

6.
Plants (Basel) ; 12(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37960103

RESUMEN

The high-affinity K+ transporter (HAK) family, the most prominent potassium transporter family in plants, which involves K+ transport, plays crucial roles in plant responses to abiotic stresses. However, the HAK gene family remains to be characterized in quinoa (Chenopodium quinoa Willd.). We explored HAKs in quinoa, identifying 30 members (CqHAK1-CqHAK30) in four clusters phylogenetically. Uneven distribution was observed across 18 chromosomes. Furthermore, we investigated the proteins' evolutionary relationships, physicochemical properties, conserved domains and motifs, gene structure, and cis-regulatory elements of the CqHAKs family members. Transcription data analysis showed that CqHAKs have diverse expression patterns among different tissues and in response to abiotic stresses, including drought, heat, low phosphorus, and salt. The expressional changes of CqHAKs in roots were more sensitive in response to abiotic stress than that in shoot apices. Quantitative RT-PCR analysis revealed that under high saline condition, CqHAK1, CqHAK13, CqHAK19, and CqHAK20 were dramatically induced in leaves; under alkaline condition, CqHAK1, CqHAK13, CqHAK19, and CqHAK20 were dramatically induced in leaves, and CqHAK6, CqHAK9, CqHAK13, CqHAK23, and CqHAK29 were significantly induced in roots. Our results establish a foundation for further investigation of the functions of HAKs in quinoa. It is the first study to identify the HAK gene family in quinoa, which provides potential targets for further functional study and contributes to improving the salt and alkali tolerance in quinoa.

7.
Sci Rep ; 13(1): 15082, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37699964

RESUMEN

Previous studies have indicated that some blood metrics play a crucial role in the diagnostic and prognostic values of various solid tumours. However, their comprehensive and unbiased comparison for nasopharyngeal carcinoma (NPC) has not been performed. Twenty blood metrics evaluated in tumours or noncancerous diseases were selected. We selected 1089 patients with NPC and analyzed the relationship between these metrics, clinical characteristics, and overall survival (OS). The albumin and prognostic nutritional index (PNI) exhibited a high area under the curve (AUC) value (> 0.7) together with high "sensitivity (Sen) + specificity (Spe) (> 1.5)" or Youden index (> 0.5) when compared to healthy populations. In comparing NPC and nasal polyps, 9 of 20 blood metrics showed a high AUC value (> 0.7). However, only the PNI and international normalised ratio show a sufficiently high Sen + Spe or Youden Index. None of them could distinguish the status of the TNM classification well. Only the lymphocyte-to-monocyte ratio (LMR) could predict the OS of patients with NPC (cut-off, 4.91; p = 0.0069). Blood metrics as non-invasive biomarkers are valuable tools for clinical management. Among these indicators, PNI is the most ideal indicator to distinguish NPC from healthy and nasal polyps. The LMR has good prognostic value.


Asunto(s)
Pólipos Nasales , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/diagnóstico , Monocitos , Biomarcadores , Neoplasias Nasofaríngeas/diagnóstico
8.
Adv Mater ; 35(39): e2302512, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37421606

RESUMEN

While the microenvironment around catalytic sites is recognized to be crucial in thermocatalysis, its roles in photocatalysis remain subtle. In this work, a series of sandwich-structured metal-organic framework (MOF) composites, UiO-66-NH2 @Pt@UiO-66-X (X means functional groups), is rationally constructed for visible-light photocatalytic H2 production. By varying the ─X groups of the UiO-66-X shell, the microenvironment of the Pt sites and photosensitive UiO-66-NH2 core can be simultaneously modulated. Significantly, the MOF composites with identical light absorption and Pt loading present distinctly different photocatalytic H2 production rates, following the ─X group sequence of ─H > â”€Br > â”€NA (naphthalene) > â”€OCH3  > â”€Cl > â”€NO2 . UiO-66-NH2 @Pt@UiO-66-H demonstrates H2 production rate up to 2708.2 µmol g-1  h-1 , ≈222 times that of UiO-66-NH2 @Pt@UiO-66-NO2 . Mechanism investigations suggest that the variation of the ─X group can balance the charge separation of the UiO-66-NH2 core and the proton reduction ability of Pt, leading to an optimal activity of UiO-66-NH2 @Pt@UiO-66-H at the equilibrium point.

9.
Cancer Manag Res ; 15: 423-432, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37214188

RESUMEN

Objective: To explore the predictive value of the ratio of monocyte to apolipoprotein A1 (MAR) (a new index related to inflammation and lipid in breast cancer (BC)) and its relationship with clinicopathological staging. Methods: The hematological test results of 394 patients with breast diseases, including 276 cases of BC, 118 cases of benign breast disease (BBD), and 219 healthy volunteers (HV), were retrospectively collected. The clinical value of MAR was analyzed with binary logistic regression. Results: Using statistical software analysis, the results showed that MAR level (P<0.001) was the largest in the BC group, followed by BBD, and the lowest in the HV group, and it was found to be an indicator to distinguish BC from BBD, also an independent risk factor for BC. The increase in MAR level showed that the risk of BC was 3.733 times higher than that of HV (P<0.001). In addition, there was a notable difference in MAR between early, middle and late stages of BC patients (P=0.047), with the highest MAR level in late stage (0.510±0.078) and the lowest MAR level in early stage (0.392±0.011); the MAR level of those with tumor invasion depth of Phase 4 was the highest (0.484±0.072), and that of Phase 1/2 was the lowest (0.379±0.010), with a statistically significant difference (P<0.001). MAR was positively correlated with tumor invasion depth (P<0.001, r=0.210), that's, the size of MAR increased when there was more deeper tumor invasion. Conclusion: MAR is a new indicator for the auxiliary differential diagnosis of benign and malignant breast diseases, and is also an independent risk factor for BC. High-level MAR is closely related to late staging and tumor invasion depth of BC. It can be seen that MAR is a potentially valuable predictor of BC, and this is the first study to explore the clinical value of MAR in BC.

10.
J Obstet Gynaecol ; 43(1): 2195490, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37038923

RESUMEN

Thalassaemia is a typically monogenic disease caused by mutations or deletions in the globin gene and has a high prevalence in southern China. Prenatal screening for thalassaemia can be effective in reducing the incidence of thalassaemia. Haematologic parameters of pregnant thalassaemia carriers are diverse and potentially valuable for identifying different types of genotypes. By comparing and evaluating haematological parameters, formulas in the literature, we tried to reveal differences between pregnant women carrying different types of thalassaemia genes. The Mentzer formula (MCV/RBC) showed a strong ability to differentiate thalassaemia genotypes in pregnant women. In addition, combined with haemoglobin electrophoresis HbA2 can further distinguish the -α/αα, αTα/αα, -/αα, ß+/N and ß0/N groups. HbA2 divides them into two groups. Based on the Mentzer formula, we can further decide which type of thalassaemia to screen (α/ß and the subgroups) for genotyping. Therefore, this simpler and more cost-effective workflow has great potential for application in screening pregnant women for thalassaemia carriers.Impact StatementWhat is already known on this subject? Currently, it is known that thalassaemia gene carriers have abnormal blood indicators. Many findings describe their important values in distinguishing thalassaemia and other blood diseases. They combined different metrics as an algorithm to distinguish thalassaemia and iron deficiency anaemia. Prenatal screening is an effective method to reduce the incidence of thalassaemia. The current main method is PCR. Due to technical and financial constraints, many backward places cannot use this technology. The necessity for prenatal screening for thalassaemia has been overlooked.What the results of this study add? Among these algorithms, Mentzer formula revealed differences in haematological parameters during pregnancy between normal individuals and thalassaemia carriers. Combining the HbA2, thalassaemia carriers can be distinguished from normal individuals, including -α/αα, αTα/αα, -/αα, ß0/N and ß+/N.What are the implications of these findings for clinical practice and/or further research? We provide another tool for these hospitals that donot have Hb electrophoresis test and PCR. Then the clinical doctor can get some evidence and suggest women go to another big hospital for essential tests. It is an excellent suggestion. In the future, we will collect more specific gene types and further investigate their potential relationship using these formulas.


Asunto(s)
Talasemia alfa , Talasemia beta , Femenino , Humanos , Embarazo , Talasemia alfa/sangre , Talasemia alfa/diagnóstico , Talasemia alfa/genética , Talasemia beta/sangre , Talasemia beta/diagnóstico , Talasemia beta/genética , Genotipo , Heterocigoto , Mutación , Mujeres Embarazadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA