Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Environ Manage ; 362: 121073, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833926

RESUMEN

Hydrologic-hydraulic modelling of urban catchment is an asset for land managers to simulate Sustainable Urban Drainage Systems (SUDS) implementation to fulfil combined sewer overflow (CSO) regulations. This review aims to assess the current practices in modelling SUDS scenarios at large scale for CSO mitigation encompassing every stage of the modelling process from the choice of the equation to the validation of the initial state of the urban system, right through to the elaboration, modelling, and selection of SUDS scenarios to evaluate their performance on CSO. Through a quantitative and qualitative analysis of 50 published studies, we found a diversity of choices when modelling the status quo of the urban system. Authors generally do not explain the modelling processes of slow components (deep infiltration, groundwater infiltration) and interconnexion between SUDS and the sewer system. In addition, only a few authors explain how CSO structures are modelled. Furthermore, the modelling of SUDS implementation at catchment scale is highlighted in the 50 studies retrieved with three different approaches going from simplified to detailed. SUDS modelling choices seem to be consistent with the objectives: studies focusing on dealing with several objectives at the time typically opt for a complex system configuration that includes the surface processes, network, CSO, SUDS, and often the soil and/or groundwater components. Conversely, authors who have selected a basic configuration generally aim to address a single, straightforward question (e.g., which type of SUDS). However, elaboration and selection of scenarios for CSO mitigation is mainly based on local constraints, which does not allow hydrological performance to be directly optimised. In conclusion, to improve current practices in modelling SUDS scenarios at large scale for CSO mitigation, authors suggest to: (i) improve clear practices of CSO modelling, calibration and validation at the urban catchment scale, (ii) develop methods to optimize the performance of scenarios for CSO mitigation using hydrological drivers, and (iii) improve parsimonious and user-friendly models to simulate SUDS scenarios in a context of data scarcity.


Asunto(s)
Modelos Teóricos , Aguas del Alcantarillado , Agua Subterránea , Hidrología
2.
Water Res ; 230: 119504, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36621275

RESUMEN

The evolution of the climate in the future will probably lead to an increase in extreme rainfall events, particularly in the Mediterranean regions. This change in rainfall patterns will have impacts on combined sewer systems operation with a possible increase of spilled flows, leading to an increase of untreated water volumes released to the receiving water. Due to the impact of overflows on the water cycle, local authorities managing combined sewer systems are wondering about the extent of these changes and the possibility of taking it into account in stormwater management structure design. To do this, rainfall data with a fine time step are required to better master the shape of the hyetographs that are crucial to get a relevant rainfall/runoff relationship in an urban environment. However, there are currently no simulations of future rainfall series available at a time step compatible with the needs in urban drainage field. In this work, future rainfall time series with a fine time step are elaborated with the aim to be used in urban hydrology. The proposed approach is based on simulations results from five regional climate models in the framework of the Euro-Cordex program. It consists in a spatial downscaling step followed by a temporal disaggregation. The rainfall time series obtained are then used as input for a calibrated and validated hydrological model to investigate the evolution of annual CSO volumes and frequencies by 2100. The results show an increase of annual spilled volumes between 13% and 52% according to the considered climate model. This increase will most likely be a problem regarding compliance of sewer networks in line with the water framework directive, particularly the current French regulations. No clear trends were observed on the CSO frequencies. If there is a consensus for all the carried-out simulations to conclude that the CSO volumes will increase, we must remember that actual regional climate models suffer from limited spatial and temporal resolution and don't explicitly solve convection processes. Due to this point uncertainty concerning the evolution rate remains important particularly for intense rainfall episodes. New generations of climate models are needed to accurately predict intense episodes.


Asunto(s)
Cambio Climático , Ciclo Hidrológico , Agua , Movimientos del Agua , Factores de Tiempo , Lluvia , Aguas del Alcantarillado
3.
Water Res ; 72: 239-50, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25683631

RESUMEN

Up to now, emerging contaminants have not been further-studied in in-situ stormwater best management practices and especially in detention basins. In this article, the efficiency of a dry stormwater detention basin was investigated regarding the removal of 7 alkylphenols and alkylphenol ethoxylates, 9 polybrominated diphenyl ethers, 45 pesticides and bisphenol A. Concentrations of contaminants were obtained by chemical analysis on dissolved and particulate phase distinctly. The removal efficiency was assessed on total, dissolved and particulate phase accounting for the global chain of uncertainty with a 95% confidence interval. Results showed that pesticides (rather hydrophilic) are not trapped in the detention basin but are released contrarily to B209 which is mostly in particulate phase. Alkylphenols and alkylphenol ethoxylates are present in both phases and the efficiency is storm event-dependent. Uncertainty consideration in efficiency determination revealed efficiency data, usually presented by raw values are not relevant to conclude on the performance of a detention basin. In this case study, efficiency data with a 95% confidence interval indicate that only 35%, 50% and 41% of campaigns showed an impact (in trapping or releasing) of the detention basin on alkylphenols and ethoxylates, polybrominated diphenyl ethers and pesticides respectively.


Asunto(s)
Tormentas Ciclónicas , Incertidumbre , Contaminantes Químicos del Agua/aislamiento & purificación , Francia , Material Particulado/análisis , Lluvia
4.
Water Sci Technol ; 66(6): 1325-32, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22828313

RESUMEN

Open-channel junctions are common occurrences in sewer networks and flow rate measurement often occurs near these singularities. Local flow structures are 3D, impact on the representativeness of the local flow measurements and thus lead to deviations in the flow rate estimation. The present study aims (i) to measure and simulate the flow pattern in a junction flow, (ii) to analyse the impact of the junction on the velocity distribution according to the distance from the junction and thus (iii) to evaluate the typical error derived from the computation of the flow rate close to the junction.


Asunto(s)
Modelos Teóricos , Ingeniería Sanitaria/métodos , Movimientos del Agua , Simulación por Computador , Factores de Tiempo
5.
Water Sci Technol ; 62(1): 106-14, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20595760

RESUMEN

The development of a continuous model to simulate the behaviour of sewer systems requires detailed information on each component of the flows contributing to the global discharge. In this paper authors investigate a novel method based on signal processing and long time series data implemented with a 2 min time step (flow rate, conductivity, pH and turbidity) in order to identify the dry weather components in a separated stormwater sewer system draining an industrial catchment. The wavelet analysis is applied to the recorded data to identify main components in dry weather flow after the removing of the signal noise. This paper highlights also a method to detect inflow into sewer system and shows how hydrological modelling can be used to characterise the relevant components. These techniques could be used as a basis for several applications.


Asunto(s)
Procesamiento de Señales Asistido por Computador , Administración de Residuos , Francia , Modelos Teóricos
6.
Water Sci Technol ; 61(8): 2021-6, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20388999

RESUMEN

Many investigations have been carried out in order to develop models which allow the understanding of complex physical processes involved in urban flooding. The modelling of the interactions between overland flows on streets and flooding flows from rivers and sewer networks is one of the main objectives of recent and current research programs in hydraulics and urban hydrology. However, the modelling of the discharge distribution in the street network with crossroad needs further research due to the complexity of the flow through junctions. This paper outlines the ability of the improved one-dimensional CANOE software to simulate the street flows through the virtual network (developed under the Hy(2)Ville French National project framework) with several cross-roads. The improvements are done by adding in CANOE the energy losses coefficients deriving from the calibration phase based on the experimental study of the flow through small scale physical model of cross-road channels. Comparisons between 1D and 2D simulated distribution of discharges through the virtual network show a good agreement for the global distribution. However, large differences are observed focusing on the individual cross-road intersections in the virtual network.


Asunto(s)
Ciudades , Inundaciones , Modelos Teóricos , Programas Informáticos , Calibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA