Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Braz J Microbiol ; 52(1): 185-193, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33442865

RESUMEN

Cystic fibrosis (CF) causes a variety of symptoms in different organs, but the majority of the morbidity and mortality of CF is related with pulmonary conditions. Primary infections are usually bacterial, and when treated with antibiotics, yeast infections appear or become more evident. Studies show that different microorganisms can co-inhabit the same environment and the interactions could be synergistic or antagonistic. Using techniques including viable and non-viable cell-to-cell interactions, mixed culture in liquid, and solid media sharing or not the supernatant, this study has evaluated interactions between the fungal species Scedosporium apiospermum and Scedosporium boydii with the bacterial species Staphylococcus aureus, Pseudomonas aeruginosa, and Burkholderia cepacia. Cell-to-cell interactions in liquid medium showed that P. aeruginosa and B. cepacia were able to reduce fungal viability but only in the presence of alive bacteria. Interactions without cell contact using a semi-permeable membrane showed that all bacteria were able to inhibit both fungal growths/viabilities. Cell-free supernatants from bacterial growth reduced fungal viability in planktonic fungal cells as well as in some conditions for preformed fungal biomass. According to the chemical analysis of the bacterial supernatants, the predominant component is protein. In this work, we verified that bacterial cells and their metabolites, present in the supernatants, can play anti-S. apiospermum and anti-S. boydii roles on fungal growth and viability.


Asunto(s)
Fibrosis Quística/microbiología , Pseudomonas aeruginosa/fisiología , Scedosporium/crecimiento & desarrollo , Staphylococcus aureus/fisiología , Humanos , Viabilidad Microbiana , Micosis/microbiología
2.
Future Med Chem ; 11(22): 2905-2917, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31713454

RESUMEN

Aim: Glycosphingolipids are conserved lipids displaying a variety of functions in fungal cells, such as determination of cell polarity and virulence. They have been considered as potent targets for new antifungal drugs. The present work aimed to test two inhibitors, myriocin and DL-threo-1-Phenyl-2-palmitoylamino-3-morpholino-1-propanol, in Scedosporium boydii, a pathogenic fungus which causes a wide range of disease. Materials & methods: Mass spectrometry, microscopy and cell biology approaches showed that treatment with both inhibitors led to defects in fungal growth and membrane integrity, and caused an increased susceptibility to the current antifungal agents. Conclusion: These data demonstrate the antifungal potential of drugs inhibiting sphingolipid biosynthesis, as well as the usefulness of sphingolipids as promising targets for the development of new therapeutic options.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Scedosporium/metabolismo , Esfingolípidos/biosíntesis , Membrana Celular/metabolismo , Ácidos Grasos Monoinsaturados/metabolismo , Meperidina/análogos & derivados , Meperidina/metabolismo
3.
J Fungi (Basel) ; 5(3)2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31311197

RESUMEN

Scedosporium/Lomentospora complex is composed of filamentous fungi, including some clinically relevant species, such as Pseudallescheria boydii, Scedosporium aurantiacum, and Scedosporium apiospermum. Glucosylceramide (GlcCer), a conserved neutral glycosphingolipid, has been described as an important cell surface molecule playing a role in fungal morphological transition and pathogenesis. The present work aimed at the evaluation of GlcCer structures in S. aurantiacum and Pseudallescheria minutispora, a clinical and an environmental isolate, respectively, in order to determine their participation in fungal growth and host-pathogen interactions. Structural analysis by positive ion-mode ESI-MS (electrospray ionization mass spectrometer) revealed the presence of different ceramide moieties in GlcCer in these species. Monoclonal antibodies against Aspergillus fumigatus GlcCer could recognize S. aurantiacum and P. minutispora conidia, suggesting a conserved epitope in fungal GlcCer. In addition, these antibodies reduced fungal viability, enhanced conidia phagocytosis by macrophages, and decreased fungal survival inside phagocytic cells. Purified GlcCer from both species led to macrophage activation, increasing cell viability as well as nitric oxide and superoxide production in different proportions between the two species. These results evidenced some important properties of GlcCer from species of the Scedosporium/Lomentospora complex, as well as the effects of monoclonal anti-GlcCer antibodies on fungal cells and host-pathogen interaction. The differences between the two species regarding the observed biological properties suggest that variation in GlcCer structures and strain origin could interfere in the role of GlcCer in host-pathogen interaction.

4.
Med Mycol ; 54(8): 846-55, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27343286

RESUMEN

In this study, we analyzed the impact of immunization with the peptidorhamnomannan (PRM) from the cell wall of the fungus Scedosporium (Lomentospora) prolificans in a murine model of invasive scedosporiosis. Immunization with PRM decreased the survival of mice infected with S. prolificans. Immunization of mice with PRM led to decreased secretion of pro-inflammatory cytokines and chemokines but did not affect the secretion of IL-10. Mice immunized with PRM showed an increase in IgG1 secretion, which is an immunoglobulin linked to a nonprotective response. Splenocytes isolated from mice infected with S. prolificans and immunized with PRM showed no differences in the percentages of Th17 cells and no increase in the frequency of the CD4(+)CD62L(Low) T cell population. PRM-immunized mice showed a significant increase in the percentage of Treg cells. In summary, our results indicated that immunization with PRM did not assist or improve the immunological response against S. prolificans infection. PRM exacerbated the infection process by reducing the inflammatory response, thereby facilitating colonization, virulence and dissemination by the fungus.


Asunto(s)
Glicoproteínas/metabolismo , Inmunosupresores/metabolismo , Micosis/microbiología , Micosis/patología , Scedosporium/crecimiento & desarrollo , Scedosporium/inmunología , Animales , Modelos Animales de Enfermedad , Femenino , Vacunas Fúngicas/administración & dosificación , Vacunas Fúngicas/inmunología , Inmunoglobulina G/sangre , Ratones Endogámicos BALB C , Linfocitos T Reguladores/inmunología
5.
PLoS One ; 10(4): e0123189, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25875427

RESUMEN

In this study, we analyze the importance of O-linked oligosaccharides present in peptidorhamnomannan (PRM) from the cell wall of the fungus Scedosporium prolificans for recognition and phagocytosis of conidia by macrophages. Adding PRM led to a dose-dependent inhibition of conidia phagocytosis, whereas de-O-glycosylated PRM did not show any effect. PRM induced the release of macrophage-derived antimicrobial compounds. However, O-linked oligosaccharides do not appear to be required for such induction. The effect of PRM on conidia-induced macrophage killing was examined using latex beads coated with PRM or de-O-glycosylated PRM. A decrease in macrophage viability similar to that caused by conidia was detected. However, macrophage killing was unaffected when beads coated with de-O-glycosylated PRM were used, indicating the toxic effect of O-linked oligosaccharides on macrophages. In addition, PRM triggered TNF-α release by macrophages. Chemical removal of O-linked oligosaccharides from PRM abolished cytokine induction, suggesting that the O-linked oligosaccharidic chains are important moieties involved in inflammatory responses through the induction of TNF-α secretion. In summary, we show that O-glycosylation plays a role in the recognition and uptake of S. prolificans by macrophages, killing of macrophages and production of pro- inflammatory cytokines.


Asunto(s)
Glicoproteínas/metabolismo , Scedosporium/fisiología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Células Cultivadas , Femenino , Citometría de Flujo , Glicoproteínas/inmunología , Glicosilación , Interleucina-10/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Microscopía Fluorescente , Óxido Nítrico/metabolismo , Fagocitosis , Conejos , Esporas Fúngicas/fisiología
6.
PLoS One ; 9(5): e98149, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24878570

RESUMEN

Scedosporium apiospermum is an emerging fungal pathogen that causes both localized and disseminated infections in immunocompromised patients. Glucosylceramides (CMH, GlcCer) are the main neutral glycosphingolipids expressed in fungal cells. In this study, glucosylceramides (GlcCer) were extracted and purified in several chromatographic steps. Using high-performance thin layer chromatography (HPTLC) and electrospray ionization mass spectrometry (ESI-MS), N-2'-hydroxyhexadecanoyl-1-ß-D-glucopyranosyl-9-methyl-4,8-sphingadienine was identified as the main GlcCer in S. apiospermum. A monoclonal antibody (Mab) against this molecule was used for indirect immunofluorescence experiments, which revealed that this CMH is present on the surface of the mycelial and conidial forms of S. apiospermum. Treatment of S. apiospermum conidia with the Mab significantly reduced fungal growth. In addition, the Mab also enhanced the phagocytosis and killing of S. apiospermum by murine cells. In vitro assays were performed to evaluate the CMHs for their cytotoxic activities against the mammalian cell lines L.929 and RAW, and an inhibitory effect on cell proliferation was observed. Synergistic in vitro interactions were observed between the Mab against GlcCer and both amphotericin B (AmB) and itraconazole. Because Scedosporium species develop drug resistance, the number of available antifungal drugs is limited; our data indicate that combining immunotherapy with the available drugs might be a viable treatment option. These results suggest that in S. apiospermum, GlcCer are most likely cell wall components that are targeted by antifungal antibodies, which directly inhibit fungal development and enhance macrophage function; furthermore, these results suggest the combined use of monoclonal antibodies against GlcCer and antifungal drugs for antifungal immunotherapy.


Asunto(s)
Glucosilceramidas/metabolismo , Macrófagos/microbiología , Scedosporium/crecimiento & desarrollo , Scedosporium/metabolismo , Anfotericina B/farmacología , Animales , Anticuerpos Monoclonales/inmunología , Línea Celular , Medios de Cultivo Condicionados/metabolismo , Glucosilceramidas/química , Glucosilceramidas/inmunología , Itraconazol/farmacología , Masculino , Ratones , Scedosporium/efectos de los fármacos , Scedosporium/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA