Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Imaging Radiat Oncol ; 17: 13-19, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33898772

RESUMEN

BACKGROUND AND PURPOSE: The restricted bore diameter of current simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) systems can be an impediment to achieving similar patient positioning during PET/MRI planning and radiotherapy. Our goal was to evaluate the B1 transmit (B1 +) uniformity, B1 + efficiency, and specific absorption rate (SAR) of a novel radiofrequency (RF) body coil design, in which RF shielded PET detectors were integrated with the specific aim of enabling a wide-bore PET/MRI system. MATERIALS AND METHODS: We designed and constructed a wide-bore PET/MRI RF body coil to be integrated with a clinical MRI system. To increase its inner bore diameter, the PET detectors were positioned between the conductors and the RF shield of the RF body coil. Simulations and experiments with phantoms and human volunteers were performed to compare the B1 + uniformity, B1 + efficiency, and SAR between our design and the clinical body coil. RESULTS: In the simulations, our design achieved nearly the same B1 + field uniformity as the clinical body coil and an almost identical SAR distribution. The uniformity findings were confirmed by the physical experiments. The B1 + efficiency was 38% lower compared to the clinical body coil. CONCLUSIONS: To achieve wide-bore PET/MRI, it is possible to integrate shielding for PET detectors between the body coil conductors and the RF shield without compromising MRI performance. Reduced B1 + efficiency may be compensated by adding a second RF amplifier. This finding may facilitate the application of simultaneous whole-body PET/MRI in radiotherapy planning.

2.
Magn Reson Med ; 85(6): 3060-3070, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33604921

RESUMEN

PURPOSE: Non-Cartesian imaging sequences involve sampling during rapid variation of the encoding field gradients. The quality of the reconstructed images often suffers from insufficient knowledge of the exact dynamics of the actual fields applied during sampling. METHODS: We propose determination of the accurate field dynamics by measuring the currents at the gradient amplifier outputs using the amplifiers' internal sensors concurrently with imaging. The actual dynamic field evolution is then determined by convolution with the measured current-to-field impulse response function of the gradient coil. Integration of the gradient field evolution allows derivation of the k-space trajectory for reconstruction. RESULTS: The current-based approach is investigated in spiral and ultrashort TE phantom imaging. In comparison with the model-based product reconstruction as well as a correction approach based on the conventional input waveform-to-field impulse response function, it provides slightly improved image quality. The improvement is ascribed to a better representation of eddy current and amplifier nonlinearity effects. CONCLUSION: Trajectory calculation based on measured amplifier output currents offers a robust, purely measurement-based alternative to conventional model-based approaches. The implementation can mitigate gradient amplifier imperfections with no or little additional hardware effort.


Asunto(s)
Artefactos , Procesamiento de Imagen Asistido por Computador , Algoritmos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Lectura
3.
Magn Reson Med ; 65(3): 770-7, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21337409

RESUMEN

An MR-electrophysiology (EP) catheter is presented that provides full diagnostic EP functionality and a high level of radiofrequency safety achieved by custom-designed transmission lines. Highly resistive wires transmit intracardiac electrograms and currents for intracardiac pacing. A transformer cable transmits the localization signal of a tip coil. Specific absorption rate simulations and temperature measurements at 1.5 T demonstrate that a wire resistance > 3 kΩ/m limits dielectric heating to a physiologically irrelevant level. Additional wires do not increase tip specific absorption rate significantly, which is important because some clinical catheters require up to 20 electrodes. It is further demonstrated that radiofrequency-induced and pacing-induced resistive heating of the wires is negligible under clinical conditions. The MR-EP catheters provided uncompromised recording of electrograms and cardiac pacing in combination with a standard EP recorder in MR-guided in vivo EP studies, and the tip coil enabled fast and robust catheter localization. In vivo temperature measurements during such a study did not detect any device-related heating, which confirms the high level of safety of the catheter, whereas unacceptable heating was found with a standard EP catheter. The presented concept for the first time enables catheters with full diagnostic EP functionality and active tracking and at the same time a sufficient level of radiofrequency safety for MRI without specific absorption rate-related limitations.


Asunto(s)
Ablación por Catéter/instrumentación , Técnicas Electrofisiológicas Cardíacas/instrumentación , Imagen por Resonancia Magnética/instrumentación , Animales , Quemaduras por Electricidad/etiología , Quemaduras por Electricidad/prevención & control , Ablación por Catéter/efectos adversos , Técnicas Electrofisiológicas Cardíacas/efectos adversos , Diseño de Equipo , Análisis de Falla de Equipo , Imagen por Resonancia Magnética/efectos adversos , Ondas de Radio/efectos adversos , Porcinos
4.
J Magn Reson ; 179(2): 250-62, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16423544

RESUMEN

A general theory of spin-lattice nuclear relaxation of spins I=1/2 caused by dipole-dipole couplings to quadrupole spins S1, characterized by a non-zero averaged (static) quadrupole coupling, is presented. In multispin systems containing quadrupolar and dipolar nuclei, transitions of spins 1/2 leading to their relaxation are associated through dipole-dipole couplings with certain transitions of quadrupole spins. The averaged quadrupole coupling attributes to the energy level structure of the quadrupole spin and influences in this manner relaxation processes of the spin 1/2. Typically, quadrupole spins exhibit also a complex multiexponential relaxation sensed by the dipolar spin as an additional modulation of the mutual dipole-dipole coupling. The proposed model includes both effects and is valid for an arbitrary magnetic field and an arbitrary quadrupole spin quantum number. The theory is applied to interpret fluorine relaxation profiles in LaF3 ionic crystals. The obtained results are compared with predictions of the 'classical' Solomon relaxation theory.

5.
Solid State Nucl Magn Reson ; 28(2-4): 180-92, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16171985

RESUMEN

Perturbation approach to time evolution of multi-spin systems containing quadrupole and dipolar spins has been presented and discussed. The treatment comprises polarization transfer effects, field-dependent relaxation processes of dipolar as well as quadrupole spins and combined results of both of them. Complete theories dealing with various aspects of the spin dynamic processes have been proposed. Because of an educational character of this paper, relevant assumptions, limitations and even particular steps of the proposed treatments have been discussed in detail. Special emphasis is put on understanding of validity regimes of the perturbation treatment, depending on relative strengths of spin interactions and timescales of relevant motional processes affecting them. Motional regimes required for spins to be involved in essentially different evolution pathways like polarization transfers or relaxation have been illustrated by experimental examples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...