Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; 20(4): 533-537, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30576051

RESUMEN

Being alone or together makes a difference for the photophysics of dyes but for ionic dyes it is difficult to quantify the interactions due to solvent screening and nearby counter ions. Gas-phase luminescence experiments are desirable and now possible based on recent developments in mass spectrometry. Here we present results on tailor-made rhodamine homodimers where two dye cations are separated by methylene linkers, (CH2 )n . In solution the fluorescence is almost identical to that from the monomer whereas the emission from bare cation dimers redshifts with decreasing n. In the absence of screening, the electric field from the charge on one dye is strong enough to polarize the other dye, both in the ground state and in the excited state. An electrostatic model based on symmetric dye responses (equal induced-dipole moments in ground state) captures the underlying physics and demonstrates interaction even at large distances. Our results have possible implications for gas-phase Förster Resonance Energy Transfer.

2.
Chem Commun (Camb) ; 54(22): 2763-2766, 2018 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-29480303

RESUMEN

Two subphthalocyanine (SubPc) units and a perethynylated, alkyne-expanded radiaannulene (RA) were fused together by a four-fold Sonogashira reaction to give a compound exhibiting: (i) four reversible one-electron reductions, the first signalling good acceptor strength of the RA core itself, while the following three are a consequence of the entire scaffold, and (ii) intense light absorption that spans a remarkably broad region.

3.
Nat Commun ; 6: 10233, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26667583

RESUMEN

The ability of molecules to change colour on account of changes in solvent polarity is known as solvatochromism and used spectroscopically to characterize charge-transfer transitions in donor-acceptor molecules. Here we report that donor-acceptor-substituted molecular wires also exhibit distinct properties in single-molecule electronics under the influence of a bias voltage, but in absence of solvent. Two oligo(phenyleneethynylene) wires with donor-acceptor substitution on the central ring (cruciform-like) exhibit remarkably broad conductance peaks measured by the mechanically controlled break-junction technique with gold contacts, in contrast to the sharp peak of simpler molecules. From a theoretical analysis, we explain this by different degrees of charge delocalization and hence cross-conjugation at the central ring. Thus, small variations in the local environment promote the quinoid resonance form (off), the linearly conjugated (on) or any form in between. This shows how the conductance of donor-acceptor cruciforms is tuned by small changes in the environment.

4.
Acta Crystallogr C Struct Chem ; 71(Pt 6): 452-5, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26044325

RESUMEN

π-Conjugated donor-acceptor systems based on dithiafulvene (DTF) donor units and various acceptor units have attracted attention for their linear and nonlinear optical properties. The reaction between p-benzoquinone and a 1,3-dithiole phosphonium salt, deprotonated by lithium hexamethyldisilazide (LiHMDS), gave a product mixture from which the Michael adduct [systematic name: dimethyl 2-(3-hydroxy-6-oxocyclohexa-2,4-dien-1-ylidene)-2H-1,3-dithiole-4,5-dicarboxylate], C13H10O6S2, was isolated. It is likely that one of the unidentified products obtained previously by others from related reactions could be a similar Michael adduct.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...