Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eplasty ; 11: e42, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22096614

RESUMEN

OBJECTIVE: Manipulation of cotton operating room towels within the abdominal cavity in open abdominal surgery has been associated with the formation of peritoneal adhesions. In a rabbit model, the use of standard cotton operating room towels is compared to the Lap Pak, a silicone bowel-packing device, to determine the potential for reducing the risk of adhesions. METHODS: Thirty rabbits were randomly assigned to 3 groups. The rabbits underwent a sham surgery with incision only (n = 10), placement of operating room towels (n = 10), or placement of a Lap Pak (n = 10). After 14 days, the rabbits were sacrificed and the peritoneal cavity explored for adhesions. The number, tenacity, ease of dissection, and density of adhesions were recorded, and the adhesions quantitatively graded using a Modified Hopkins Adhesion scoring system. RESULTS: The operating room towel group had an average adhesion score of 2.5, and 8 (80%) rabbits developed adhesions. The sham group had an average adhesion score of 0.3 and one rabbit (10%) developed adhesions. The Lap Pak group had an average adhesion score of 0.2 and 1 rabbit (10%) developed adhesions. The frequency and severity of adhesions in the operating room towel group were significantly greater from that of the baseline sham group. There was no significant difference between the Lap Pak and sham groups. CONCLUSIONS: In this rabbit laparotomy model, the use of the Lap Pak to retract the bowels resulted in significantly fewer adhesions compared to cotton operating room towels. Lap Pak may be beneficial for bowel packing in general abdominal surgeries.

2.
Langmuir ; 27(15): 9211-8, 2011 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-21675779

RESUMEN

We report nonintrusive optical microscopy measurements of single micrometer-sized silica and polystyrene colloids in inhomogeneous AC electric fields as a function of field amplitude and frequency. By using a Boltzmann inversion of the time-averaged sampling of single particles within inhomogeneous electric fields, we sensitively measure induced dipole-field interactions on the kT energy scale and fN force scale. Measurements are reported for frequencies when the particle polarizability is greater and less than the medium, as well as the crossover between these conditions when dipole-field interactions vanish. For all cases, the measured interactions are well-described by theoretical potentials by fitting a nondimensional induced dipole-field magnitude. While silica dipole-field magnitudes are well-described by existing electrokinetic models, the polystyrene results suggest an anomalously high surface conductance. Sensitive measurements of dipole-field interactions in this work provide a basis to understand dipole-dipole interactions in particle ensembles in the same measurement geometry in part II.

3.
Langmuir ; 27(15): 9219-26, 2011 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-21675780

RESUMEN

We report nonintrusive optical microscopy measurements of ensembles of polystyrene colloids in inhomogeneous AC electric fields as a function of field frequency and particle size. By using an inverse Monte Carlo (MC) simulation analysis of time-averaged particle microstructures, we sensitively measure induced dipole-dipole interactions on the kT energy scale. Measurements are reported for frequencies when the particle polarizability is greater and less than the medium, as well as the crossover between these conditions when dipole-dipole interactions vanish. By using measured single dipole-field interactions and associated parameters from Part I as input in the inverse analysis, the dipole-dipole interactions in this work are accurately modeled with no adjustable parameters for conditions away from the crossover frequency (i.e., |f(CM)| > 0). As dipolar interactions vanish at the crossover, a single frequency-dependent parameter is introduced to account for microstructures that appear to result from weak AC electro-osmotic flow induced interactions. By connecting quantitative measures of equilibrium microstructures and kT-scale dipole-field and dipole-dipole interactions, our findings provide a basis to understand colloidal assembly in inhomogeneous AC electric fields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...