Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.726
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38954294

RESUMEN

PURPOSE: Oocyte maturation defect (OOMD) is a rare cause of in vitro fertilization failure characterized by the production of immature oocytes. Compound heterozygous or homozygous PATL2 mutations have been associated with oocyte arrest at the germinal vesicle (GV), metaphase I (MI), and metaphase II (MII) stages, as well as morphological changes. METHODS: In this study, we recruited three OOMD cases and conducted a comprehensive multiplatform laboratory investigation. RESULTS: Whole exome sequence (WES) revealed four diagnostic variants in PATL2, nonsense mutation c.709C > T (p.R237*) and frameshift mutation c.1486_1487delinsT (p.A496Sfs*4) were novel mutations that have not been reported previously. Furthermore, the pathogenicity of these variants was predicted using in silico analysis, which indicated detrimental effects. Molecular dynamic analysis suggested that the A496S variant disrupted the hydrophobic segment, leading to structural changes that affected the overall protein folding and stability. Additionally, biochemical and molecular experiments were conducted on cells transfected with wild-type (WT) or mutant PATL2 (p.R237* and p.A496Sfs*4) plasmid vectors. CONCLUSIONS: The results demonstrated that PATL2A496Sfs*4 and PATL2R237* had impacts on protein size and expression level. Interestingly, expression levels of specific genes involved in oocyte maturation and early embryonic development were found to be simultaneously deregulated. The findings in our study expand the variation spectrum of the PATL2 gene, provide solid evidence for counseling on future pregnancies in affected families, strongly support the application of in the diagnosis of OOMD, and contribute to the understanding of PATL2 function.

2.
Front Oncol ; 14: 1342996, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38947894

RESUMEN

Background: Systemic immune-inflammation index (SII), a novel prognostic indicator, is being more commonly utilized in different types of cancer. This research project involved combining information from previously published studies to examine how pre-treatment SII can predict outcomes in individuals with upper tract urothelial carcinoma (UTUC). Further examination of the correlation between SII and clinical and pathological features in UTUC. Methods: We thoroughly chose pertinent articles from various databases including PubMed, Embase, Cochrane Library, Web of Science, Chinese National Knowledge Infrastructure (CNKI), WanFang database, and Chinese Scientific Journal Database (VIP) until March 10, 2022.The data collected was analyzed using Stata 17.0 software (Stat Corp, College Station, TX). Subsequently, the impact of SII on the survival outcomes of UTUC patients was evaluated by combining HRs with 95% confidence intervals. Results: Six included studies were finally confirmed, including 3911 UTUC patients in seven cohorts. The results showed that high SII before treatment predicted poor overall survival (HR =1.87, 95%CI 1.20-2.92, p=0.005), cancer specific survival (HR=2.70, 95%CI 1.47-4.96, P=0.001), and recurrence-free survival (HR =1.52, 95%CI 1.12-2.07, P=0.007). And the elevated SII may be related to LVI (present vs. absent) (OR=0.83, 95% CI=0.71-0.97, p=0.018), pT stage (pT ≥3 vs. < 3) (OR=1.82, 95% CI=1.21-2.72, p=0.004), and pN stage (N+ vs. N0) (OR=3.27, 95% CI=1.60-6.71, p=0.001). Conclusion: A comprehensive analysis of all included articles in this study showed that higher pretreatment SII was related to poorer survival outcomes and adverse pathological features independently. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42022316333.

3.
Front Immunol ; 15: 1409461, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38979425

RESUMEN

Primary immune thrombocytopenia (ITP) is an acquired autoimmune disorder characterized by the destruction of platelets. Although it was long believed that the critical role of autoantibodies in platelet destruction, primarily through the Fc-dependent platelet clearance pathway, recent findings indicate that the significance of the Fc-independent platelet clearance pathway mediated by hepatocytes, thus shedding light on a previously obscure aspect of ITP pathogenesis. Within this context, the desialylation of platelets has emerged as a pivotal biochemical marker. Consequently, targeting platelet desialylation emerges as a novel therapeutic strategy in the pathogenesis of ITP. Notably, prevailing research has largely focused on antiplatelet antibodies and the glycosylation-associated mechanisms of platelet clearance, while comprehensive analysis of platelet desialylation remains scant. In response, we retrospectively discuss the historical progression, inducing factors, generation process, and molecular regulatory mechanisms underlying platelet desialylation in ITP pathogenesis. By systematically evaluating the most recent research findings, we contribute to a comprehensive understanding of the intricate processes involved. Moreover, our manuscript delves into the potential application of desialylation regulatory strategies in ITP therapy, heralding novel therapeutic avenues. In conclusion, this manuscript not only fills a critical void in existing literature but also paves the way for future research by establishing a systematic theoretical framework. By inspiring new research ideas and offering insights into the development of new therapeutic strategies and targeted drugs, our study is poised to significantly advance the clinical management of ITP.


Asunto(s)
Biomarcadores , Plaquetas , Púrpura Trombocitopénica Idiopática , Humanos , Púrpura Trombocitopénica Idiopática/sangre , Púrpura Trombocitopénica Idiopática/inmunología , Púrpura Trombocitopénica Idiopática/terapia , Plaquetas/metabolismo , Plaquetas/inmunología , Animales , Autoanticuerpos/sangre , Autoanticuerpos/inmunología , Glicosilación
4.
Nanoscale ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38984618

RESUMEN

Reservoir computing (RC) has attracted considerable attention for its efficient handling of temporal signals and lower training costs. As a nonlinear dynamic system, RC can map low-dimensional inputs into high-dimensional spaces and implement classification using a simple linear readout layer. The memristor exhibits complex dynamic characteristics due to its internal physical processes, which renders them an ideal choice for the implementation of physical reservoir computing (PRC) systems. This review focuses on PRC systems based on memristors, explaining the resistive switching mechanism at the device level and emphasizing the tunability of their dynamic behavior. The development of memristor-based reservoir computing systems is highlighted, along with discussions on the challenges faced by this field and potential future research directions.

5.
Heliyon ; 10(12): e32595, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38988518

RESUMEN

Objective: To investigate the prevalence of subthreshold depression among Chinese college students and to explore the related factors. Methods: The research subjects were Chinese college students participating in the "2022 Psychology and Behavior Investigation of Chinese Residents (PBICR-2022)". Data on respondents' general characteristics, quality of life, perceived pressure, family communication, perceived social support, self-efficacy, and depression status were gathered. To investigate the association between each variable and the risk of subthreshold depression, statistical analyses, including chi-square tests and rank sum tests were conducted. Furthermore, a binary stepwise logistic regression was employed to establish the regression model of the factors related to subthreshold depression among Chinese college students. Results: A prevalence of subthreshold depression of about 39.7 % was found among the 8934 respondents. Logistic regression analysis revealed that respondents who are female, have chronic diseases, are in debt, experience significant impacts from epidemic control policies, have lower self-assessed quality of life, experience challenges in family communication, perceive lower social support, have lower self-efficacy, and feel higher perceived pressure are more likely to develop subthreshold depression compared to the control group. (P < 0.05). Conclusion: The prevalence rate of subthreshold depression among Chinese college students was found to be approximately 40 %. Female college students suffering from chronic diseases, with households in debt, greatly impacted by epidemic control policies, and experiencing high perceived stress, may be at risk for subthreshold depression among Chinese college students. On the other hand, strong family communication, perceived social support, and self-efficacy were identified as potential protective factors. In order to facilitate timely screening, diagnosis, and treatment of subthreshold depression in Chinese college students, it is crucial for the government, local communities, colleges, and families to prioritize the mental health of college students and implement targeted measures accordingly.

6.
Front Microbiol ; 15: 1433983, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38989020

RESUMEN

Siderophores are produced by bacteria in iron-restricted conditions. However, we found maltose could induce the biosynthesis of the siderophore lysochelin in Lysobacter sp. 3655 in rich media that are not compatible with siderophore production. Maltose markedly promoted cell growth, with over 300% increase in cell density (OD600) when LB medium was added with maltose (LBM). While lysochelin was not detectable when OD600 in LBM was below 5.0, the siderophore was clearly produced when OD600 reached 7.5 and dramatically increased when OD600 was 15.0. Coincidently, the transcription of lysochelin biosynthesis genes was remarkably enhanced following the increase of OD600. Conversely, the iron concentration in the cell culture dropped to 1.2 µM when OD600 reached 15.0, which was 6-fold lower than that in the starting medium. Moreover, mutants of the maltose-utilizing genes (orf2677 and orf2678) or quorum-sensing related gene orf644 significantly lowered the lysochelin yield. Transcriptomics analysis showed that the iron-utilizing/up-taking genes were up-regulated under high cell density. Accordingly, the transcription of lysochelin biosynthetic genes and the yield of lysochelin were stimulated when the iron-utilizing/up-taking genes were deleted. Finally, lysochelin biosynthesis was positively regulated by a TetR regulator (ORF3043). The lysochelin yield in orf3043 mutant decreased to 50% of that in the wild type and then restored in the complementary strain. Together, this study revealed a previously unrecognized mechanism for lysochelin biosynthetic regulation, by which the siderophore could still be massively produced in Lysobacter even grown in a rich culture medium. This finding could find new applications in large-scale production of siderophores in bacteria.

7.
Adv Healthc Mater ; : e2304285, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38994661

RESUMEN

Retinal ischemia‒reperfusion (IR) is a major contributor to vision impairment and irreversible vision loss due to retinal ganglion cell (RGC) injury or loss. Contemporary therapeutic approaches predominantly focus on the amelioration of symptoms rather than addressing the fundamental etiological factors. Oxidative stress is a notable feature and an important mediator of IR damage. Lycium barbarum polysaccharide (LBP), the main active ingredient of Lycium barbarum, has various pharmacological effects, including antioxidation, immunoregulation, and neuroprotective effects. In this study, the ROS-consumable moiety phenylboronic acid pinacol ester (PBA) is introduced to LBP molecules, which can self-assemble into nanoparticles in aqueous solution. This nanoparticle (termed PLBP) can reduce the cellular ROS levels and enhance the antioxidant capability of RGCs by activating the NRF2 pathway, thus protecting RGCs from ferroptosis and preserving visual function in response to IR injury. PLBP also reduces neuroinflammation by inhibiting the ability of microglia to phagocytose, migrate, secrete inflammatory cytokines, and activate the NF-κB pathway. In conclusion, this approach can be used as an inspiration for the future development of neuroprotective drugs.

8.
Food Chem X ; 23: 101548, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38974200

RESUMEN

Granaticins are natural pigments derived from microorganisms with promising bioactivity. However, their practical applications have been restricted due to inherent instability. To improve the stability of granaticins from the novel strain Streptomyces vilmorinianum YP1, microcapsules were prepared using gum Arabic (GA) by a freeze-drying method. The optimal parameters for microencapsulation were determined using response surface methodology. Under the optimal conditions (GA 9.2% (v/v), a wall/-core ratio 4.8 (w/w), encapsulating temperature 29 °C), the maximum encapsulation efficiency achieved was 93.64%. The microcapsules were irregular single crystals with an average particle size of 206.37 ± 2.51 nm. Stability testing indicated improved stability of the microencapsulated granaticins. Notably, granaticnic B retention increased by 17.0% and 6.6% after exposure to sunlight and storage at 4 °C, respectively. These finding suggest that GA as a well material significantly enhances the stability of granaticins from S. vilmorinianum YP1, facilitating their potential applications.

9.
Front Cell Infect Microbiol ; 14: 1394721, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975331

RESUMEN

Since 2019, Coronavirus Disease 2019(COVID-19) has affected millions of people worldwide. Except for acute respiratory distress syndrome, dysgeusis is also a common symptom of COVID-19 that burdens patients for weeks or permanently. However, the mechanisms underlying taste dysfunctions remain unclear. Here, we performed complete autopsies of five patients who died of COVID-19. Integrated tongue samples, including numerous taste buds, salivary glands, vessels, and nerves were collected to map the pathology, distribution, cell tropism, and receptor distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the tongue. Our results revealed that all patients had moderate lymphocyte infiltration around the salivary glands and in the lamina propria adjacent to the mucosa, and pyknosis in the epithelia of taste buds and salivary glands. This may be because the serous acini, salivary gland ducts, and taste buds are the primary sites of SARS-CoV-2 infection. Multicolor immunofluorescence showed that SARS-CoV-2 readily infects Keratin (KRT)7+ taste receptor cells in taste buds, secretory cells in serous acini, and inner epithelial cells in the ducts. The major receptors, angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine subtype 2 (TMPRSS2), were both abundantly expressed in these cells. Viral antigens and receptor were both rarely detected in vessels and nerves. This indicates that SARS-CoV-2 infection triggers pathological injury in the tongue, and that dysgeusis may be directly related to viral infection and cellular damage.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , Autopsia , COVID-19 , SARS-CoV-2 , Serina Endopeptidasas , Lengua , Tropismo Viral , Humanos , COVID-19/patología , COVID-19/virología , SARS-CoV-2/patogenicidad , Lengua/virología , Lengua/patología , Masculino , Enzima Convertidora de Angiotensina 2/metabolismo , Femenino , Persona de Mediana Edad , Serina Endopeptidasas/metabolismo , Glándulas Salivales/virología , Glándulas Salivales/patología , Anciano , Papilas Gustativas/virología , Papilas Gustativas/patología , Receptores Virales/metabolismo
10.
Water Res ; 261: 122046, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38976931

RESUMEN

Carbon recovery from waste activated sludge has been attracting considerable attention. However, the migration and transformation patterns of carbon sources between the phases have rarely been reported. In this study, a novel strategy using cation exchange resin (CER) coupled with sodium chloride (NaCl) to enhance carbon recovery through anaerobic fermentation (AF) was proposed. The results demonstrated that CER coupled with NaCl destroyed OH and CO stretching in amide I while promoting the formation of ß-sheet and random coil structures, leading to sludge disintegration. This significantly improved the kinetics of endogenous carbon release, resulting in the release of 1146.33 mg/L of carbon from the solid sludge into the liquid phase. Approximately 75.61 % of the initial carbon source was bio-transformed into short-chain fatty acids. Correspondingly, carbon recovery was significantly increased up to 852.23 mg C/L, 4.57 times that of the control. Mechanism exploration revealed that carbon source recovery was significantly elevated by the synergistic effect of CER and NaCl. CER effectively removed high-valence cations from extracellular polymeric substance (EPS), weakening its bridging and adsorption-electro neutralization capabilities, promoting protein deflocculation, and triggering EPS disruption to release extracellular carbon sources. NaCl disrupted the ionic strength and distribution inside and outside microbial cells, creating an osmotic pressure difference that resulted in cell plasmolysis and lysis, ultimately inducing the release of intracellular carbon sources. Economic and carbon emission reduction benefit analyses verified that the CER coupled with NaCl pretreatment is a cost-effective sludge treatment strategy. This study illustrates the carbon source migration and transformation pathways in the CER coupled with NaCl-assisted AF process, providing guidance for sustainable sludge management.

11.
J Mater Chem B ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38978513

RESUMEN

Extracellular clustering of amyloid-ß (Aß) and an impaired autophagy lysosomal pathway (ALP) are the hallmark features in the early stages of incurable Alzheimer's disease (AD). There is a pressing need to find or develop new small molecules for diagnostics and therapeutics for the early stages of AD. Herein, we report a small molecule, namely F-SLCOOH, which can bind and detect Aß1-42, Iowa mutation Aß, Dutch mutation Aß fibrils and oligomers exhibiting enhanced emission with high affinity. Importantly, F-SLCOOH can readily pass through the blood-brain barrier and shows highly selective binding toward the extracellular Aß aggregates in real-time in live animal imaging of a 5XFAD mice model. In addition, a high concentration of F-SLCOOH in both brain and plasma of wildtype mice after intraperitoneal administration was found. The ex vivo confocal imaging of hippocampal brain slices indicated excellent colocalization of F-SLCOOH with Aß positive NU1, 4G8, 6E10 A11 antibodies and THS staining dye, affirming its excellent Aß specificity and targetability. The molecular docking studies have provided insight into the unique and specific binding of F-SLCOOH with various Aß species. Importantly, F-SLCOOH exhibits remarkable anti-fibrillation properties against toxic Aß aggregate formation of Aß1-42, Iowa mutation Aß, and Dutch mutation Aß. F-SLCOOH treatment also exerts high neuroprotective functions and promotes autophagy lysosomal biogenesis in neuronal AD cell models. In summary, the present results suggest that F-SLCOOH is a highly promising theranostic agent for diagnosis and therapeutics of AD.

12.
Front Oncol ; 14: 1369035, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38993639

RESUMEN

There are limited treatment options for recurrent advanced esophageal squamous cell carcinoma. A good response with a possible abscopal effect was observed in a patient with programmed death-ligand 1 (PD-L1)-negative recurrent advanced esophageal squamous cell carcinoma treated with an anti-PD-1 monoclonal antibody plus stereotactic body radiotherapy (SBRT). A 66-year-old male patient was diagnosed with recurrent advanced esophageal squamous cell carcinoma with multiple lung metastases (13 metastatic nodules in total) four months after completing radical radiotherapy plus concurrent and consolidated chemotherapy, and PD-L1 expression in the primary esophageal tumor was negative. This patient received 25 cycles of camrelizumab (an anti-PD-1 monoclonal antibody) in total plus upfront SBRT for two metastatic nodules, which was administered after the first cycle of camrelizumab. After this combined treatment, for most nontarget nodules, an obvious volume decrease and fuzzy change were observed, including two nodules that completely vanished. At the end of follow-up, the progression-free survival and duration of response of this patient were 34 months and 32 months, respectively. This case report indicated that an anti-PD-1 monoclonal antibody combined with SBRT was a promising therapeutic strategy for recurrent esophageal squamous cell carcinoma even in patients with negative PD-L1 expression.

13.
iScience ; 27(7): 110218, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38993672

RESUMEN

Timely adjustments of antibiotic and corticosteroid treatments are vital for patients with diffuse parenchymal lung diseases (DPLDs). In this study, 41 DPLD patients with negative metagenomic next-generation sequencing (mNGS) results who were responsive to corticosteroids were enrolled. Among these patients, about 26.8% suffered from drug-induced DPLD, while 9.8% presented autoimmune-related DPLD. Following the report of the negative mNGS results, in 34 patients with complete antibiotics administration profiles, 79.4% (27/34) patients discontinued antibiotics after receiving negative mNGS results. Moreover, 70.7% (29/41) patients began or increased the administration of corticosteroid upon receipt of negative mNGS results. In the microbiota analysis, Staphylococcus and Stenotrophomonas showed higher detection rates in patients with oxygenation index (OI) below 300, while Escherichia and Stenotrophomonas had higher abundance in patients with pleural effusion. In summary, our findings demonstrated the clinical significance of mNGS in assisting the antibiotic and corticosteroid treatment adjustments in corticosteroid-responsive DPLD. Lung microbiota may imply the severity of the disease.

14.
Sci Adv ; 10(28): eadn1745, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996026

RESUMEN

Rapid drug clearance and off-target effects of therapeutic drugs can induce low bioavailability and systemic side effects and gravely restrict the therapeutic effects of inflammatory bowel diseases (IBDs). Here, we propose an amplifying targeting strategy based on orally administered gallium (Ga)-based liquid metal (LM) nano-agents to efficiently eliminate reactive oxygen and nitrogen species (RONS) and modulate the dysregulated microbiome for remission of IBDs. Taking advantage of the favorable adhesive activity and coordination ability of polyphenol structure, epigallocatechin gallate (EGCG) is applied to encapsulate LM to construct the formulations (LM-EGCG). After adhering to the inflamed tissue, EGCG not only eliminates RONS but also captures the dissociated Ga to form EGCG-Ga complexes for enhancive accumulation. The detained composites protect the intestinal barrier and modulate gut microbiota for restoring the disordered enteral microenvironment, thereby relieving IBDs. Unexpectedly, LM-EGCG markedly decreases the Escherichia_Shigella populations while augmenting the abundance of Akkermansia and Bifidobacterium, resulting in favorable therapeutic effects against the dextran sulfate sodium-induced colitis.


Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Animales , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Administración Oral , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Catequina/análogos & derivados , Catequina/química , Catequina/administración & dosificación , Catequina/farmacología , Galio/química , Galio/farmacología , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Colitis/tratamiento farmacológico , Humanos , Especies de Nitrógeno Reactivo/metabolismo
15.
J Pharm Sci ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-39002726

RESUMEN

Dynamic in vitro absorption systems and mechanistic absorption modeling via PBPK have both shown promise in predicting human oral absorption, although these efforts have been largely separate; this work aimed to integrate knowledge from these approaches to investigate the oral absorption of a RET inhibitor, pralsetinib, with BCS Class II properties. Tiny-TIM (TIM B.V., Weteringbrug​, The Netherlands) is a dynamic in vitro model with close simulation of the successive physiological conditions of the human stomach and small intestine. Tiny-TIM runs with pralsetinib were performed at doses of 200 mg and 400 mg under fasting conditions. Mechanistic modeling of absorption was performed in Simcyp V21 (Certara, Manchester, UK). Pralsetinib fasted bioaccessibility in the Tiny-TIM system was 63% at 200 mg and 53% at 400 mg; a 16% reduction at 400 mg was observed under elevated gastric pH. Maximum pralsetinib solubility from the small intestinal compartment in Tiny-TIM directly informed the supersaturation/precipitation model parameters. The PBPK model predicted a similar fraction absorbed at 200 mg and 400 mg, consistent with the dose proportional increases in observed pralsetinib exposure. Integrating dynamic in vitro systems with mechanistic absorption modeling provides a promising approach for understanding and predicting human absorption with challenging low solubility compounds.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 322: 124788, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38986256

RESUMEN

MicroRNAs (miRNAs) play a key role in physiological processes, and their dysregulation is closely related to various human diseases. Simultaneous detection of multiple miRNAs is pivotal to cancer diagnosis at an early stage. However, most multicomponent analyses generally involve multiple excitation wavelengths, which are complicated and often challenging to simultaneously acquire multiple detection signals. In this study, a convenient and sensitive sensor was developed to simultaneously detection of multiple miRNAs under a single excitation wavelength through the fluorescence resonance energy transfer between the carbon dots (CDs)/quantum dots (QDs) and graphene oxide (GO). A hybridization chain reaction (HCR) was triggered by miRNA-141 and miRNA-21, resulting in the high sensitivity with a limit of detection (LOD) of 50 pM (3σ/k) for miRNA-141 and 60 pM (3σ/k) for miRNA-21. This simultaneous assay also showed excellent specificity discrimination against the mismatch. Furthermore, our proposed method successfully detected miRNA-21 and miRNA-141 in human serum samples at a same time, indicating its diagnostic potential in a clinical setting.

17.
Talanta ; 278: 126524, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38986308

RESUMEN

The high efficient surface-enhanced Raman scatterring (SERS) methods to detect thiacloprid and imidacloprid were established using ZIF-8-wrapped Ag nanoparticles (AgNPs) modified with ß-cyclodextrin (ß-CD). The substrate of ZIF-8/ß-CD@AgNPs was characterized by ultraviolet visible spectra (UV-vis), thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM). The interaction between the substrate and thiacloprid/imidacloprid was also explored. The optimum measurement conditions were obtained by response surface model based on single-factor experiments. Enhancement factors (EFs) of thiacloprid and imidacloprid were respectively 2.29 × 106 and 2.60 × 106. A good linearity between the scattering intensity and the concentration of thiacloprid/imidacloprid within 3-1000 nmol L-1/6-400 nmol L-1 was established. The interference experiments indicated that the methods had good selectivity. The SERS methods were successfully applied to detect thiacloprid and imidacloprid in several vegetables samples. The recoveries ranged from 95.5 % to 105 % (n = 5). The detection limits (LODs) (S/N = 3) for thiacloprid and imidacloprid were 1.50 and 0.83 nmol L-1, respectively.

18.
World Neurosurg ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986947

RESUMEN

OBJECTIVE: This study aimed to establish a predictive nomogram model for re-collapse of fractured vertebra after posterior pedicle screw fixation in thoracolumbar fractures (TLFs). METHODS: Patients undergoing posterior pedicle screw fixation for TLFs at our hospital between January 2016 and December 2021 were retrospectively reviewed. Patients were divided into two groups according to the presence or absence of re-collapse of the fractured vertebra at the final follow-up. The predictors for fractured vertebra re-collapse were identified by univariate and multivariable logistic regression analysis, and a nomogram model was developed. The prediction performance and internal validation were established. RESULTS: A total of 224 patients were included in this study. Of these, 46 (20.5%) patients developed re-collapse of fractured vertebra. Age, thoracic and lumbar injury severity score (TLICS), screw distribution in the fractured vertebra, and anterior vertebral height compression (AVHC) ratio were associated with vertebral re-collapse. These predictors were used to construct a predictive nomogram. The area under the receiver operating characteristic curve (AUC) of the nomogram model was 0.891. The concordance index (C-index) was 0.891, and it was 0.877 with bootstrapping validation. The calibration curves and decision curve analysis (DCA)also suggested that the nomogram model had excellent predictive performances for fractured vertebra re-collapse. CONCLUSIONS: A clinical nomogram incorporating four variables was constructed to predict fractured vertebra re-collapse after posterior pedicle screw fixation for TLFs. The nomogram demonstrated good calibration and discriminative abilities, which may help clinicians to make better treatment decisions.

19.
Asian J Surg ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38987135
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...