Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
Front Microbiol ; 15: 1396213, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39149212

RESUMEN

Bacterial wilt (BW) is a devastating plant disease caused by the soil-borne bacterium Ralstonia solanacearum species complex (Rssc). Numerous efforts have been exerted to control BW, but effective, economical, and environmentally friendly approaches are still not available. Bacteriophages are a promising resource for the control of bacterial diseases, including BW. So, in this study, a crop BW pathogen of lytic bacteriophage was isolated and named PQ43W. Biological characterization revealed PQ43W had a short latent period of 15 min, 74 PFU/cell of brust sizes, and good stability at a wide range temperatures and pH but a weak resistance against UV radiation. Sequencing revealed phage PQ43W contained a circular double-stranded DNA genome of 47,156 bp with 65 predicted open reading frames (ORFs) and genome annotation showed good environmental security for the PQ43W that no tRNA, antibiotic resistance, or virulence genes contained. Taxonomic classification showed PQ43W belongs to a novel genus of subfamily Kantovirinae under Caudoviricetes. Subsequently, a dose of PQ43W for phage therapy in controlling crop BW was determined: 108 PFU*20 mL per plant with non-invasive irrigation root application twice by pot experiment. Finally, a field experiment of PQ43W showed a significantly better control effect in crop BW than the conventional bactericide Zhongshengmycin. Therefore, bacteriophage PQ43W is an effective bio-control resource for controlling BW diseases, especially for crop cultivation.

2.
Front Psychiatry ; 15: 1423715, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109368

RESUMEN

The prevalence of insomnia has increased in recent years, significantly affecting the lives of many individuals. Coronavirus disease 2019 (COVID-19) infection has been found to have a substantial impact on the human gut microbiota (GM). Clinical studies have shown that the high prevalence, prolonged duration, and refractory treatment of insomnia symptoms following the COVID-19 pandemic may be related to the effect of COVID-19 infection on the GM. Therefore, the GM may be a potential target for the treatment of insomnia following COVID-19 infection. However, relevant studies have not been well-documented, and the GM has not been sufficiently analyzed in the context of insomnia treatment. Herein, we review the interaction between sleep and the GM, summarize the characteristics of COVID-19-induced abnormal changes in the GM and metabolites in patients with insomnia, and discuss potential mechanisms, including metabolic, immune, and neural pathways, by which these abnormal changes in the GM cause insomnia as well as the factors affecting the GM. Finally, we discuss the prospect of modulating the host GM community for the effective treatment of insomnia after COVID-19 infection and the need for further clinical studies.

3.
Heliyon ; 10(14): e34329, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39114002

RESUMEN

Background: Tripterygium glycosides (TG) is extracted from the roots of Tripterygium wilfordii Hook F (Lei gong teng, a traditional Chinese medicine). It is widely used in China to treat immunoglobulin A vasculitis nephritis (IgAVN), which is a common secondary glomerular disease. As there are no guidelines for the rational application of TG, we performed this study to evaluate the efficacy and safety of different doses of TG and to determine the optimal treatment for IgAVN. Methods: Ten databases were searched from their inception to April 2023 for randomised controlled trials (RCTs) using TG, TG combined with glucocorticoids (GC), or TG combined with traditional Chinese medicine (TCM) to treat IgAVN. A network meta-analysis was performed following the protocol (CRD42023401645). Results: Forty-four eligible RCTs involving 3402 patients were included. For effective rate, TG 1.5 mg/kg/d (TG1.5) + TCM was ranked as the best intervention, followed by TG 1.0 mg/kg/d (TG1.0) + TCM, TG1.5, TG1.0+GC, TG1.0, TCM, GC, and routine treatment (RT). TG1.0+TCM ranked best in reducing recurrence, followed by TG1.0+GC, GC, TG1.5, and RT. Compared with TG1.0, TG1.0+TCM and TG1.5+TCM effectively reduced liver injury events. Compared with TG1.5, TG1.5+TCM and TG1.0+TCM effectively reduced leukopenia events. No significant differences in the reduction of gastrointestinal events were observed between the interventions. Subgroup analyses explored the effects of the participants' age. The intervention rankings of the outcomes generally remained consistent. Only a small difference was observed in gastrointestinal events. TCM was the best treatment for reducing gastrointestinal events in paediatric patients. Conclusions: The results showed a positive correlation between dose and efficacy, whereas no relationship was found between dose and adverse events. TCM can boost the efficacy and reduce adverse events when combined with TG. In conclusion, we consider TG1.5+TCM as the best treatment for IgAVN. However, further research is required to confirm these findings.

4.
Carbohydr Polym ; 343: 122464, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39174121

RESUMEN

To achieve the goals of "carbon peak and carbon neutrality" and sustainable development, we propose "Three-Dimensional Environment-Friendly" materials to balance the urgent need for the development of clean energy and the reduction of secondary environmental pollution during adsorbent preparation. In this study, three novel chitosan adsorbents (CMNSC-Leu, CMNSC-Pro, CMNSC-Phe) for uranium adsorption were designed on the basis of molecular level and successfully synthesized with three different amino acids (leucine, proline, phenylalanine) through amidation reaction in an aqueous environment using a sustainable green chitosan material. The uranium adsorption capacity of the three adsorbents was evaluated by batch adsorption, selectivity and recyclability studies. The adsorption reaction conformed to the pseudo-second-order model and was a spontaneous endothermic reaction. In particular, the maximum adsorption capacity of CMNSC-Pro for uranium was 462.7 mg·g-1 at C0 = 100 ppm. In addition, CMNSC-Pro showed better selectivity and good reusability. DFT calculation and IRI diagram were applied in this work to analyze the unique structure and adsorption process of CMNSC-Pro from the perspective of structure. Uranium was adsorbed by CMNSC-Pro via coordination, electrostatic interaction, and intraparticle diffusion. This work provided a new idea for the structural design and construction of new high-efficiency biomass adsorbents.

5.
Med Eng Phys ; 130: 104205, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39160029

RESUMEN

OBJECTIVES: Intimal tears caused by aortic dissection can weaken the arterial wall and lead to aortic aneurysms. However, the effect of different tear states on the blood flow behaviour remains complex. This study uses a novel approach that combines numerical haemodynamic simulation with in vitro experiments to elucidate the effect of arterial dissection rupture on the complex blood flow state within the abdominal aneurysm and the endogenous causes of end-organ malperfusion. MATERIALS AND METHODS: Based on the CT imaging data and clinical physiological parameters, the overall arterial models including aortic dissection and aneurysm with single tear and double tear were established, and the turbulence behaviours and haemodynamic characteristics of arterial dissection and aneurysm under different blood pressures were simulated by using non-Newtonian flow fluids with the pulsatile blood flow rate of the clinical patients as a cycle, and the results of the numerical simulation were verified by in vitro simulation experiments. RESULTS: Hemodynamic simulations revealed that the aneurysm and single-tear false lumen generated a maximum pressure of 320.591 mmHg, 267 % over the 120 mmHg criterion. The pressure differential generates reflux, leading to a WSS of 2247.9 Pa at the TL inlet and blood flow velocities of up to 6.41 m/s inducing extend of the inlet. DTD Medium FL instantaneous WP above 120 mmHg Standard 151 % Additionally, there was 82.5 % higher flow in the right iliac aorta than in the left iliac aorta, which triggered malperfusion. Thrombus was accumulated distal to the tear and turbulence. These results are consistent with the findings of the in vitro experiments. CONCLUSIONS: This study reveals the haemodynamic mechanisms by which aortic dissection induces aortic aneurysms to produce different risk states. This will contribute to in vitro simulation studies as a new fulcrum in the process of moving from numerical simulation to clinical trials.


Asunto(s)
Aorta Abdominal , Hemodinámica , Humanos , Aorta Abdominal/fisiopatología , Aorta Abdominal/diagnóstico por imagen , Rotura de la Aorta/fisiopatología , Rotura de la Aorta/diagnóstico por imagen , Disección Aórtica/fisiopatología , Disección Aórtica/diagnóstico por imagen , Aneurisma de la Aorta Abdominal/fisiopatología , Modelos Cardiovasculares
6.
Int J Biol Macromol ; 276(Pt 1): 133890, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39019371

RESUMEN

Based on the goal of "carbon neutralization and carbon peaking", it is still challenging to develop a high adsorption performance and environmentally friendly material for uranium extraction. We proposed a new idea of "Three-Dimensional Environmental-Friendly". A series of amino acid bis-substituted chitosan aerogels (C-1, C-2, C-3, C-4 and C-5) were prepared by ice template method and selective substitution reaction in water environment. Among them, C-3 adsorbent has the antibacterial properties of gram-positive bacteria, gram-negative bacteria and marine bacteria, which is more suitable for uranium adsorption in complex environments. Also, C-3 adsorbent solves the shortcomings of poor adsorption property and easy to cause secondary pollution during modification of traditional chitosan materials. The selectivity and adsorption capacity of uranium are further improved by the unique functional groups of serine residues. At pH = 7, the maximum adsorption capacity reaches 606.32 mg/g. In addition, C-3 adsorbent have excellent selectivity and stability. The synergistic effect of coordination, electrostatic interaction and intraparticle diffusion between C-3 adsorbent and uranium may be the key to its high adsorption performance. The high performance of chitosan adsorbent provides a new idea for the design and application of green and efficient uranium adsorption materials.


Asunto(s)
Aminoácidos , Antibacterianos , Quitosano , Uranio , Quitosano/química , Uranio/química , Adsorción , Antibacterianos/farmacología , Antibacterianos/química , Aminoácidos/química , Geles/química , Concentración de Iones de Hidrógeno
7.
BMC Ecol Evol ; 24(1): 103, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080515

RESUMEN

BACKGROUND: Tongoloa is a genus comprising approximately 20 species, primarily distributed in the mountainous regions of southwest China. The insufficiency of specimen materials and morphological similarities among species render it a taxonomically challenging genus within the Apiaceae family. To elucidate the phylogenetic relationships and taxonomy of Chinese Tongoloa, this study utilized a total of 115 nrITS sequences, including 47 recently obtained sequences, for phylogenetic reconstruction. RESULTS: Phylogenetic relationships reconstructed from ITS sequences indicate that the East Asia Clade and the Komarovia Clade are sister groups, and Tongoloa belongs to the East Asia Clade. Species of Tongoloa are subdivided into 3 distinct groups, all sharing similar fruit morphologies and are clearly differentiated from related taxa. Several Tongoloa-like members classified under other genera are interpreted to be closely related to Tongoloa. Morphological and molecular data indicate that Tongoloa, Sinolimprichtia subclade and Chinese Trachydium subclade are separate yet genetically contiguous taxa. It is confirmed that Tongoloa zhongdianensis belongs to the Hymenidium Clade, while Sinocarum is classified within the Acronema Clade. Two new taxa are found in the Hengduan Mountains. CONCLUSION: Tongoloa is a genus within the East Asia Clade of Apiaceae, and the phylogeny reconstructed based on ITS sequences divides it into 3 main groups. By integrating fruit morphology and molecular phylogenetic analyses, we preliminary clarified the intricate taxonomic relationships among Tongoloa and related taxa. These results provide valuable opportunities for a deeper understanding of the phylogeny of Tongoloa.


Asunto(s)
Apiaceae , Filogenia , China , Apiaceae/genética , Apiaceae/clasificación , ADN de Plantas/genética , ADN Espaciador Ribosómico/genética , Análisis de Secuencia de ADN
8.
Antioxidants (Basel) ; 13(7)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39061895

RESUMEN

Oxidative stress resulting from reactive oxygen species (ROS) is often considered to be the leading cause of interstitial cystitis (IC), which is a chronic inflammatory disease. Antioxidants have been proven to have promising therapeutic effects on IC. In this study, we present an antioxidant intervention for IC by introducing curcumin-loaded cerium oxide nanoparticles (Cur-CONPs). Recognizing oxidative stress as the primary contributor to IC, our research builds on previous work utilizing cerium oxide nanoparticles (CONPs) for their outstanding antioxidant and anti-inflammatory properties. However, given the need to effectively relieve acute inflammation, we engineered Cur-CONPs to harness the short-term radical-scavenging antioxidant prowess of curcumin. Through in vitro studies, we demonstrate that the Cur-CONPs exhibit not only robust antioxidant capabilities but also superior anti-inflammatory properties over CONPs alone. Furthermore, in vivo studies validate the therapeutic effects of Cur-CONPs on IC. Mice with IC subjected to the Cur-CONP treatment exhibited improved micturition behaviors, relief from pelvic pain sensitivity, and reduced expression of inflammatory proteins (IL-6, IL-1ß, TNF-α, Cox2). These findings suggest that the synergistic antioxidant properties of the Cur-CONPs that combine the sustained antioxidant properties of CONPs and acute anti-inflammatory capabilities of curcumin hold promise as a novel treatment strategy for IC.

9.
Cancer Med ; 13(13): e7453, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38986683

RESUMEN

OBJECTIVE: The purpose of the study is to construct meaningful nomogram models according to the independent prognostic factor for metastatic pancreatic cancer receiving chemotherapy. METHODS: This study is retrospective and consecutively included 143 patients from January 2013 to June 2021. The receiver operating characteristic (ROC) curve with the area under the curve (AUC) is utilized to determine the optimal cut-off value. The Kaplan-Meier survival analysis, univariate and multivariable Cox regression analysis are exploited to identify the correlation of inflammatory biomarkers and clinicopathological features with survival. R software are run to construct nomograms based on independent risk factors to visualize survival. Nomogram model is examined using calibration curve and decision curve analysis (DCA). RESULTS: The best cut-off values of 966.71, 0.257, and 2.54 for the systemic immunological inflammation index (SII), monocyte-to-lymphocyte ratio (MLR), and neutrophil-to-lymphocyte ratio (NLR) were obtained by ROC analysis. Cox proportional-hazards model revealed that baseline SII, history of drinking and metastasis sites were independent prognostic indices for survival. We established prognostic nomograms for primary endpoints of this study. The nomograms' predictive potential and clinical efficacy have been evaluated by calibration curves and DCA. CONCLUSION: We constructed nomograms based on independent prognostic factors, these models have promising applications in clinical practice to assist clinicians in personalizing the management of patients.


Asunto(s)
Inflamación , Nomogramas , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/inmunología , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Inflamación/inmunología , Anciano , Pronóstico , Neutrófilos/inmunología , Curva ROC , Estimación de Kaplan-Meier , Linfocitos/inmunología , Monocitos/inmunología , Metástasis de la Neoplasia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Modelos de Riesgos Proporcionales
10.
Phys Chem Chem Phys ; 26(25): 17561-17568, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38869486

RESUMEN

Chromium(III)-doped zinc gallate (CZGO) is one of the representative persistent luminescent phosphors emitting in the near-infrared (NIR) region. The emission wavelength it covers falls in the tissue-transparent window, making CZGO a promising optical probe for various biomedical applications. The PersL mechanism dictates that such a phenomenon is only profound in large crystals, so the preparation of CZGO with sizes small enough for biological applications while maintaining its luminescence remains a challenging task. Recent attempts to use mesoporous silica nanoparticles (MSN) as a template for growing nanosized CZGO have been successful. MSN is also a well-studied drug carrier, and incorporating CZGO in MSN further expands its potential in imaging-guided therapeutics. Despite the interest, it is unclear of how the addition of MSN would affect the luminescence properties of CZGO. In this work, we observed that forming a CZGO@MSN nanocomposite could enhance the luminescence intensity and extend the PersL lifetime of CZGO. X-ray absorption fine structure (XAFS) analysis was conducted to investigate the local structure of Zn2+, and an interaction between Zn2+ in CZGO and the MSN matrix was identified.

11.
Front Genet ; 15: 1413484, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38894722

RESUMEN

Injuries to the spinal cord nervous system often result in permanent loss of sensory, motor, and autonomic functions. Accurately identifying the cellular state of spinal cord nerves is extremely important and could facilitate the development of new therapeutic and rehabilitative strategies. Existing experimental techniques for identifying the development of spinal cord nerves are both labor-intensive and costly. In this study, we developed a machine learning predictor, ScnML, for predicting subpopulations of spinal cord nerve cells as well as identifying marker genes. The prediction performance of ScnML was evaluated on the training dataset with an accuracy of 94.33%. Based on XGBoost, ScnML on the test dataset achieved 94.08% 94.24%, 94.26%, and 94.24% accuracies with precision, recall, and F1-measure scores, respectively. Importantly, ScnML identified new significant genes through model interpretation and biological landscape analysis. ScnML can be a powerful tool for predicting the status of spinal cord neuronal cells, revealing potential specific biomarkers quickly and efficiently, and providing crucial insights for precision medicine and rehabilitation recovery.

12.
Sci Adv ; 10(20): eadn7012, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38758788

RESUMEN

The ocean, a vast hydrogen reservoir, holds potential for sustainable energy and water development. Developing high-performance electrocatalysts for hydrogen production under harsh seawater conditions is challenging. Here, we propose incorporating a protective V2O3 layer to modulate the microcatalytic environment and create in situ dual-active sites consisting of low-loaded Pt and Ni3N. This catalyst demonstrates an ultralow overpotential of 80 mV at 500 mA cm-2, a mass activity 30.86 times higher than Pt-C and maintains at least 500 hours in seawater. Moreover, the assembled anion exchange membrane water electrolyzers (AEMWE) demonstrate superior activity and durability even under demanding industrial conditions. In situ localized pH analysis elucidates the microcatalytic environmental regulation mechanism of the V2O3 layer. Its role as a Lewis acid layer enables the sequestration of excess OH- ions, mitigate Cl- corrosion, and alkaline earth salt precipitation. Our catalyst protection strategy by using V2O3 presents a promising and cost-effective approach for large-scale sustainable green hydrogen production.

13.
ACS Nano ; 18(17): 11474-11486, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38632861

RESUMEN

Cobalt-nitrogen-carbon (Co-N-C) catalysts with a CoN4 structure exhibit great potential for oxygen reduction reaction (ORR), but the imperfect adsorption energy toward oxygen species greatly limits their reduction efficiency and practical application potential. Here, F-coordinated Co-N-C catalysts with square-pyramidal CoN4-F1 configuration are successfully synthesized using F atoms to regulate the axial coordination of Co centers via hydrothermal and chemical vapor deposition methods. During the synthesis process, the geometry structure of the Co atom converts from six-coordinated Co-F6 to square-pyramidal CoN4-F1 in the coordinatively unsaturated state, which provides an open binding site for the O2. The introduction of axial F atoms into the CoN4 plane alters the local atomic environment around Co, significantly improving the ORR activity and Zn-air batteries performance. In situ spectroscopy proves that CoN4-F1 sites strongly combine with the OOH* intermediate and facilitate the splitting of O-O bond, making OOH* readily decompose into O* and OH* via a dissociative pathway. Theoretical calculations confirm that the axial F atom effectively reduces the electronic density of the Co centers and facilitates the desorption of the OH* intermediate, efficiently accelerating the overall ORR kinetics. This work advances a feasible synthesis mechanism of axial ligands and provides a route to construct efficient high-coordination catalysts.

14.
Vet Res Forum ; 15(1): 7-12, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464611

RESUMEN

Mycoplasma synoviae, which causes the disease known as chicken synovitis, causes serious immunosuppression. We developed a rapid insulated isothermal polymerase chain reaction (iiPCR) assay for on-site detection of M. synoviae using a primer and probe set targeting the variable lipoprotein and haemagglutinin (vlhA) gene. In addition, the specificity, sensitivity, repeatability, and clinical detection of this method were evaluated. Our iiPCR assay detected M. synoviae clinical isolates and samples successfully and produced negative results on Mycoplasma galliscepticum, avian viral arthritis, Escherichia coli, Salmonella, Staphylococcus aureus and Corynebacterium, indicating that the PCR reactions were specific. Additionally, our iiPCR assay detected the prepared positive standard plasmid diluted 10 times (1.00 × 10-1 - 1.00 × 10-10) as a template. The undiluted positive plasmid was positive and double distilled water was negative indicating that the PCR reactions were sensitive, respectively. Finally, the vlhA positive standard plasmid with dilution multiple of 1.00 × 10-4 - 1.00 × 10-6 was repeatedly detected three times to evaluate the repeatability of the iiPCR method established in this experiment showing that the iiPCR of M. synoviae is repeatable. The established iiPCR was also used to detect 50 chicken joint enlargement samples. The thermostatic detection PCR established in this experiment was comparable to a reference real-time PCR (qPCR).

15.
BMC Plant Biol ; 24(1): 106, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38342898

RESUMEN

BACKGROUND: The genus Libanotis Haller ex Zinn, nom. cons., a contentious member of Apiaceae, encompasses numerous economically and medicinally significant plants, comprising approximately 30 species distributed across Eurasia. Despite many previous taxonomic insights into it, phylogenetic studies of the genus are still lacking. And the establishment of a robust phylogenetic framework remains elusive, impeding advancements and revisions in the taxonomic system for this genus. Plastomes with greater variability in their genetic characteristics hold promise for building a more robust Libanotis phylogeny. RESULTS: During our research, we sequenced, assembled, and annotated complete plastomes for twelve Libanotis species belong to three sections and two closely related taxa. We conducted a comprehensive comparative analysis through totally thirteen Libanotis plastomes for the genus, including an additional plastome that had been published. Our results suggested that Libanotis plastome was highly conserved between different subclades, while the coding regions were more conserved than the non-coding regions, and the IR regions were more conserved than the single copy regions. Nevertheless, eight mutation hotspot regions were identified among plastomes, which can be considered as candidate DNA barcodes for accurate species identification in Libanotis. The phylogenetic analyses generated a robustly framework for Libanotis and revealed that Libanotis was not a monophyletic group and their all three sections were polygenetic. Libanotis schrenkiana was sister to L. sibirica, type species of this genus, but the remainders scattered within Selineae. CONCLUSION: The plastomes of Libanotis exhibited a high degree of conservation and was effective in enhancing the support and resolution of phylogenetic analyses within this genus. Based on evidence from both phylogeny and morphology, we propose the recognition of "Libanotis sensu stricto" and provide taxonomic recommendations for other taxa that previously belonged to Libanotis. In conclusion, our study not only revealed the phylogenetic position and plastid evolution of Libanotis, but also provided new insights into the phylogeny of the family Apiaceae and phylogenetic relationships within the tribe Selineae.


Asunto(s)
Apiaceae , Filogenia , Evolución Molecular , Plastidios/genética , Plantas
16.
Angew Chem Int Ed Engl ; 63(14): e202319153, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38356309

RESUMEN

As a sustainable valorization route, electrochemical glycerol oxidation reaction (GOR) involves in formation of key OH* and selective adsorption/cleavage of C-C(O) intermediates with multi-step electron transfer, thus suffering from high potential and poor formate selectivity for most non-noble-metal-based electrocatalysts. So, it remains challenging to understand the structure-property relationship as well as construct synergistic sites to realize high-activity and high-selectivity GOR. Herein, we successfully achieve dual-high performance with low potentials and superior formate selectivity for GOR by forming synergistic Lewis and Brønsted acid sites in Ni-alloyed Co-based spinel. The optimized NiCo oxide solid-acid electrocatalyst exhibits low reaction potential (1.219 V@10 mA/cm2) and high formate selectivity (94.0 %) toward GOR. In situ electrochemical impedance spectroscopy and pH-dependence measurements show that the Lewis acid centers could accelerate OH* production, while the Brønsted acid centers are proved to facilitate high-selectivity formation of formate. Theoretical calculations reveal that NiCo alloyed oxide shows appropriate d-band center, thus balancing adsorption/desorption of C-O intermediates. This study provides new insights into rationally designing solid-acid electrocatalysts for biomass electro-upcycling.

17.
Environ Sci Pollut Res Int ; 31(11): 16554-16570, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38319420

RESUMEN

The directed construction of productive adsorbents is essential to avoid damaging human health from the harmful radioactive and toxic U(VI)-containing wastewater. Herein, a sort of Zr-based metal organic framework (MOF) called PCN-222 was synthesized and oxime functionalized based on directed molecular structure design to synthesize an efficient adsorbent with antimicrobial activity, named PCN-222-OM, for recovering U(VI) from wastewater. PCN-222-OM unfolded splendid adsorption capacity (403.4 mg·g-1) at pH = 6.0 because of abundant holey structure and mighty chelation for oxime groups with U(VI) ions. PCN-222-OM also exhibited outstanding selectivity and reusability during the adsorption. The XPS spectra authenticated the -NH and oxime groups which revealed a momentous function. Concurrently, PCN-222-OM also possessed good antimicrobial activity, antibiofouling activity, and environmental safety; adequately decreased detrimental repercussions about bacteria and Halamphora on adsorption capacity; and met non-toxic and non-hazardous requirements for the application. The splendid antimicrobial activity and antibiofouling activity perhaps arose from the Zr6(µ3-O)4(µ3-OH)4(H2O)4(OH)4 clusters and rich functional groups within PCN-222-OM. Originally proposed PCN-222-OM was one potentially propitious material to recover U(VI) in wastewater on account of outstanding adsorption capacity, antimicrobial activity, antibiofouling activity, and environmental safety, meanwhile providing a newfangled conception on the construction of peculiar efficient adsorbent.


Asunto(s)
Antiinfecciosos , Uranio , Humanos , Aguas Residuales , Uranio/análisis , Oximas , Estructura Molecular , Adsorción , Cinética
18.
Small ; 20(29): e2400564, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38368264

RESUMEN

Developing efficient metal-free catalysts to directly synthesize hydrogen peroxide (H2O2) through a 2-electron (2e) oxygen reduction reaction (ORR) is crucial for substituting the traditional energy-intensive anthraquinone process. Here, in-plane topological defects enriched graphene with pentagon-S and pyrrolic-N coordination (SNC) is synthesized via the process of hydrothermal and nitridation. In SNC, pentagon-S and pyrrolic-N originating from thiourea precursor are covalently grafted onto the basal plane of the graphene framework, building unsymmetrical dumbbell-like S─C─N motifs, which effectively modulates atomic and electronic structures of graphene. The SNC catalyst delivers ultrahigh H2O2 productivity of 8.1, 7.3, and 3.9 mol gcatalyst -1 h-1 in alkaline, neutral, and acidic electrolytes, respectively, together with long-term operational stability in pH-universal electrolytes, outperforming most reported carbon catalysts. Theoretical calculations further unveil that defective S─C─N motifs efficiently optimize the binding strength to OOH* intermediate and substantially diminish the kinetic barrier for reducing O2 to H2O2, thereby promoting the intrinsic activity of 2e-ORR.

19.
Anal Chem ; 96(5): 2078-2086, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38259249

RESUMEN

A series of optically active helical poly(phenylacetylene)s (PPA-Pro1, PPA-Pro3, PPA-Pro6, PPA-Pro9, and PPA-Pro12) bearing different chain lengths of L-proline oligopeptide in the side chains were obtained by polymerizing the corresponding novel phenylacetylene monomers. The monomer adopted a trans-rich helix structure when the L-proline oligopeptide chain length was longer, according to the optical activities and 2D-NMR analysis. The helical structure could be maintained and significantly influenced the polymers' helical conformation by introducing the L-proline oligopeptide to the pendants. By the way, the morphology of PPA-Pro3 was observed by atomic force microscope (AFM) on highly oriented pyrolytic graphite (HOPG), and the information on the helix direction, pitch, and chain arrangement was obtained. Also, the chiral separation properties of these polymer-based chiral stationary phases (CSPs) were investigated using high-performance liquid chromatography (HPLC). The poly(phenylacetylene)s showed enhanced enantioseparation properties toward various racemates depending on the longer chain length of the L-proline oligopeptide in the pendants and the positive synergy between the helical backbone and helical side chains. Particularly, PPA-Pro9 showed comparable or even superior enantioseparation properties for racemates 2 and 9 to four commercial columns (Daicel Chiralpak or Chiralcel AD, AS, OD, and OT), indicating that these poly(phenylacetylene)-based CSPs have potential practical values. This work presented here provides inspiration for the further development of CSPs based on a new paradigm.

20.
Carbohydr Polym ; 326: 121619, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142076

RESUMEN

Starch-based films have received considerable attention, owing to their commendable biocompatible and biodegradable properties; however, their poor ultraviolet (UV)-blocking and antibacterial performances limit their application in fruit preservation. Herein, bio-based bifunctional benzoxazine (Bi-BOZ) compounds with different carbon chain lengths were synthesized, and the influence of chain lengths on the antibacterial effect was explored. Benzoxazine with 1,12-dodecanediamine as the amine source (BOZ-DDA) exhibited excellent antibacterial and antibiofilm activities, with minimum inhibitory concentrations of 21.7 ± 2.2 and 23.3 ± 2.6 µg/mL against Escherichia coli and Staphylococcus aureus, respectively, mainly because the electrostatic attraction and hydrophobic effect of BOZ-DDA, effectively disrupted the bacterial integrity. DS/DDA films with hydrophobic, antibacterial, and UV-resistant abilities were prepared by the Schiff-base reaction between BOZ-DDA and dialdehyde starch (DS). The interactions between the films increased with BOZ-DDA content, enhanced mechanical and barrier properties. DS/DDA films exhibited acid-responsive antibacterial activity attributed to the acid hydrolysis of Schiff bases, released of BOZ-DDA from the films, and the protonation of BOZ-DDA. DS/DDA films exhibited commendable antibacterial and anti-ultraviolet characteristics compared to commercially available films, allowing them to prevent the degradation of mangoes and grapes. As sustainable antibacterial materials, the multifunctional DS/DDA films manifest promising prospects in fruit preservation packaging applications.


Asunto(s)
Benzoxazinas , Frutas , Bases de Schiff , Antibacterianos/farmacología , Escherichia coli , Embalaje de Alimentos , Almidón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...