Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genes Dev ; 33(3-4): 166-179, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30692202

RESUMEN

Although changes in alternative splicing have been observed in cancer, their functional contributions still remain largely unclear. Here we report that splice isoforms of the cancer stem cell (CSC) marker CD44 exhibit strikingly opposite functions in breast cancer. Bioinformatic annotation in patient breast cancer in The Cancer Genome Atlas (TCGA) database reveals that the CD44 standard splice isoform (CD44s) positively associates with the CSC gene signatures, whereas the CD44 variant splice isoforms (CD44v) exhibit an inverse association. We show that CD44s is the predominant isoform expressed in breast CSCs. Elimination of the CD44s isoform impairs CSC traits. Conversely, manipulating the splicing regulator ESRP1 to shift alternative splicing from CD44v to CD44s leads to an induction of CSC properties. We further demonstrate that CD44s activates the PDGFRß/Stat3 cascade to promote CSC traits. These results reveal CD44 isoform specificity in CSC and non-CSC states and suggest that alternative splicing provides functional gene versatility that is essential for distinct cancer cell states and thus cancer phenotypes.


Asunto(s)
Empalme Alternativo , Neoplasias de la Mama/genética , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Células Madre Neoplásicas/patología , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Isoformas de Proteínas , Transducción de Señal/genética
2.
Proc Natl Acad Sci U S A ; 114(31): 8366-8371, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28716909

RESUMEN

CD44 has been postulated as a cell surface coreceptor for augmenting receptor tyrosine kinase (RTK) signaling. However, how exactly CD44 triggers RTK-dependent signaling remained largely unclear. Here we report an unexpected mechanism by which the CD44s splice isoform is internalized into endosomes to attenuate EGFR degradation. We identify a CD44s-interacting small GTPase, Rab7A, and show that CD44s inhibits Rab7A-mediated EGFR trafficking to lysosomes and subsequent degradation. Importantly, CD44s levels correlate with EGFR signature and predict poor prognosis in glioblastomas. Because Rab7A facilitates trafficking of many RTKs to lysosomes, our findings identify CD44s as a Rab7A regulator to attenuate RTK degradation.


Asunto(s)
Endosomas/metabolismo , Receptores ErbB/metabolismo , Glioblastoma/patología , Receptores de Hialuranos/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Línea Celular , Receptores ErbB/antagonistas & inhibidores , Glioblastoma/genética , Células HEK293 , Humanos , Receptores de Hialuranos/genética , Lisosomas/metabolismo , Isoformas de Proteínas/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Transducción de Señal/genética , Proteínas de Unión al GTP rab/antagonistas & inhibidores , Proteínas de Unión a GTP rab7
3.
Cancer Res ; 77(14): 3791-3801, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28533273

RESUMEN

Tumor cells nearly invariably evolve sustained PI3K/Akt signaling as an effective means to circumvent apoptosis and maintain survival. However, for those tumor cells that do not acquire PI3K/Akt mutations to achieve this end, the underlying mechanisms have remained obscure. Here, we describe the discovery of a splice isoform-dependent positive feedback loop that is essential to sustain PI3K/Akt signaling in breast cancer. Splice isoform CD44s promoted expression of the hyaluronan synthase HAS2 by activating the Akt signaling cascade. The HAS2 product hyaluronan further stimulated CD44s-mediated Akt signaling, creating a feed-forward signaling circuit that promoted tumor cell survival. Mechanistically, we identified FOXO1 as a bona fide transcriptional repressor of HAS2. Akt-mediated phosphorylation of FOXO1 relieved its suppression of HAS2 transcription, with FOXO1 phosphorylation status maintained by operation of the positive feedback loop. In clinical specimens of breast cancer, we established that the expression of CD44s and HAS2 was positively correlated. Our results establish a positive feedback mechanism that sustains PI3K/Akt signaling in tumor cells, further illuminating the nearly universal role of this pathway in cancer cell survival. Cancer Res; 77(14); 3791-801. ©2017 AACR.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptores de Hialuranos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , Línea Celular Tumoral , Supervivencia Celular/fisiología , Retroalimentación Fisiológica , Femenino , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Glucuronosiltransferasa/genética , Glucuronosiltransferasa/metabolismo , Células HEK293 , Humanos , Receptores de Hialuranos/genética , Hialuronano Sintasas , Isoformas de Proteínas , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal
4.
Cancer Cell ; 25(3): 366-78, 2014 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-24613413

RESUMEN

Clonal evolution and intratumoral heterogeneity drive cancer progression through unknown molecular mechanisms. To address this issue, functional differences between single T cell acute lymphoblastic leukemia (T-ALL) clones were assessed using a zebrafish transgenic model. Functional variation was observed within individual clones, with a minority of clones enhancing growth rate and leukemia-propagating potential with time. Akt pathway activation was acquired in a subset of these evolved clones, which increased the number of leukemia-propagating cells through activating mTORC1, elevated growth rate likely by stabilizing the Myc protein, and rendered cells resistant to dexamethasone, which was reversed by combined treatment with an Akt inhibitor. Thus, T-ALL clones spontaneously and continuously evolve to drive leukemia progression even in the absence of therapy-induced selection.


Asunto(s)
Evolución Clonal/genética , Complejos Multiproteicos/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Animales Modificados Genéticamente , Antineoplásicos Hormonales/farmacología , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular , Transformación Celular Neoplásica/genética , Dexametasona/farmacología , Progresión de la Enfermedad , Resistencia a Antineoplásicos , Activación Enzimática , Variación Genética , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Datos de Secuencia Molecular , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Linfocitos T/citología , Linfocitos T/patología , Pez Cebra
5.
Wiley Interdiscip Rev RNA ; 4(5): 547-66, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23765697

RESUMEN

Alternative splicing of pre-messenger RNA (mRNA) is a fundamental mechanism by which a gene can give rise to multiple distinct mRNA transcripts, yielding protein isoforms with different, even opposing, functions. With the recognition that alternative splicing occurs in nearly all human genes, its relationship with cancer-associated pathways has emerged as a rapidly growing field. In this review, we summarize recent findings that have implicated the critical role of alternative splicing in cancer and discuss current understandings of the mechanisms underlying dysregulated alternative splicing in cancer cells.


Asunto(s)
Empalme Alternativo , Neoplasias/genética , Neoplasias/fisiopatología , Precursores del ARN/genética , Precursores del ARN/metabolismo , Animales , Regulación de la Expresión Génica , Humanos
6.
Cancer Cell ; 21(5): 680-693, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22624717

RESUMEN

Embryonal rhabdomyosarcoma (ERMS) is an aggressive pediatric sarcoma of muscle. Here, we show that ERMS-propagating potential is confined to myf5+ cells and can be visualized in live, fluorescent transgenic zebrafish. During early tumor growth, myf5+ ERMS cells reside adjacent normal muscle fibers. By late-stage ERMS, myf5+ cells are reorganized into distinct regions separated from differentiated tumor cells. Time-lapse imaging of late-stage ERMS revealed that myf5+ cells populate newly formed tumor only after seeding by highly migratory myogenin+ ERMS cells. Moreover, myogenin+ ERMS cells can enter the vasculature, whereas myf5+ ERMS-propagating cells do not. Our data suggest that non-tumor-propagating cells likely have important supportive roles in cancer progression and facilitate metastasis.


Asunto(s)
Movimiento Celular , Rabdomiosarcoma Embrionario/patología , Animales , Animales Modificados Genéticamente , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Progresión de la Enfermedad , Humanos , Ratones , Ratones SCID , Microscopía Confocal , Microscopía de Fluorescencia por Excitación Multifotónica , Factor 5 Regulador Miogénico/genética , Factor 5 Regulador Miogénico/metabolismo , Miogenina/genética , Miogenina/metabolismo , Invasividad Neoplásica , Trasplante de Neoplasias , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Proteínas Recombinantes de Fusión/metabolismo , Rabdomiosarcoma Embrionario/irrigación sanguínea , Rabdomiosarcoma Embrionario/genética , Rabdomiosarcoma Embrionario/metabolismo , Factores de Tiempo , Células Tumorales Cultivadas , Pez Cebra/genética , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
J Vis Exp ; (53): e2790, 2011 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-21775966

RESUMEN

Self-renewing cancer cells are the only cell types within a tumor that have an unlimited ability to promote tumor growth, and are thus known as tumor-propagating cells, or tumor-initiating cells. It is thought that targeting these self-renewing cells for destruction will block tumor progression and stop relapse, greatly improving patient prognosis. The most common way to determine the frequency of self-renewing cells within a tumor is a limiting dilution cell transplantation assay, in which tumor cells are transplanted into recipient animals at increasing doses; the proportion of animals that develop tumors is used the calculate the number of self-renewing cells within the original tumor sample. Ideally, a large number of animals would be used in each limiting dilution experiment to accurately determine the frequency of tumor-propagating cells. However, large scale experiments involving mice are costly, and most limiting dilution assays use only 10-15 mice per experiment. Zebrafish have gained prominence as a cancer model, in large part due to their ease of genetic manipulation and the economy by which large scale experiments can be performed. Additionally, the cancer types modeled in zebrafish have been found to closely mimic their counterpart human disease. While it is possible to transplant tumor cells from one fish to another by sub-lethal irradiation of recipient animals, the regeneration of the immune system after 21 days often causes tumor regression. The recent creation of syngeneic zebrafish has greatly facilitated tumor transplantation studies. Because these animals are genetically identical, transplanted tumor cells engraft robustly into recipient fish, and tumor growth can be monitored over long periods of time. Syngeneic zebrafish are ideal for limiting dilution transplantation assays in that tumor cells do not have to adapt to growth in a foreign microenvironment, which may underestimate self-renewing cell frequency. Additionally, one-cell transplants have been successfully completed using syngeneic zebrafish and several hundred animals can be easily and economically transplanted at one time, both of which serve to provide a more accurate estimate of self-renewing cell frequency. Here, a method is presented for creating primary, fluorescently-labeled T-cell acute lymphoblastic leukemia (T-ALL) in syngeneic zebrafish, and transplanting these tumors at limiting dilution into adult fish to determine self-renewing cell frequency. While leukemia is provided as an example, this protocol is suitable to determine the frequency of tumor-propagating cells using any cancer model in the zebrafish.


Asunto(s)
Trasplante de Neoplasias/métodos , Células Madre Neoplásicas/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Trasplante de Células Madre/métodos , Animales , ADN/administración & dosificación , ADN/genética , Citometría de Flujo/métodos , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Microinyecciones , Pez Cebra
8.
Nat Protoc ; 6(2): 229-41, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21293462

RESUMEN

Zebrafish are a useful vertebrate model for the study of development, behavior, disease and cancer. A major advantage of zebrafish is that large numbers of animals can be economically used for experimentation; however, high-throughput methods for imaging live adult zebrafish had not been developed. Here, we describe protocols for building a light-emitting diode (LED) fluorescence macroscope and for using it to simultaneously image up to 30 adult animals that transgenically express a fluorescent protein, are transplanted with fluorescently labeled tumor cells or are tagged with fluorescent elastomers. These protocols show that the LED fluorescence macroscope is capable of distinguishing five fluorescent proteins and can image unanesthetized swimming adult zebrafish in multiple fluorescent channels simultaneously. The macroscope can be built and used for imaging within 1 day, whereas creating fluorescently labeled adult zebrafish requires 1 hour to several months, depending on the method chosen. The LED fluorescence macroscope provides a low-cost, high-throughput method to rapidly screen adult fluorescent zebrafish and it will be useful for imaging transgenic animals, screening for tumor engraftment, and tagging individual fish for long-term analysis.


Asunto(s)
Proteínas Luminiscentes/análisis , Microscopía Fluorescente/métodos , Pez Cebra/genética , Animales , Animales Modificados Genéticamente/metabolismo , Fluorescencia , Luz , Microscopía Fluorescente/instrumentación , Trasplante de Neoplasias/métodos , Trasplante de Neoplasias/patología , Programas Informáticos , Grabación en Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...