RESUMEN
Only two mitochondrial (mt) genomes had been reported in members of the red algal order Batrachospermales, which are confined to freshwater habitats. Additional mt genomes of six representative members (Batrachospermum macrosporum, Kumanoa ambigua, K. mahlacensis, Paralemanea sp., Sheathia arcuata, and Sirodotia delicatula) were sequenced aiming to gain insights on the evolution of their mt genomes from a comparative analysis with other red algal groups. Mt genomes sequenced had the following characteristics: lengths ranging between 24,864 nt and 29,785 nt, 22 to 26 protein-coding genes, G + C contents of 21.3 to 30.7%, number of tRNA of 16 to 37, non-coding DNA from 3.8% to 14.8%. Comparative analysis revealed that mt genomes in Batrachospermales are highly conserved in terms of genome size and gene content and synteny. Phylogenetic analyses based on COI nucleotide data revealed high bootstrap support only for the genera usually recovered in the phylogenetic analyses but no support for supra-generic groups. The insertion of a group II intron carrying an ORF coding for the corresponding intron maturase interrupting the COI gene was observed in Paralamenea sp. and accounted for its larger genome in comparison to the other Batrachospermales mt genomes.
RESUMEN
Little is known about genome organization in members of the order Batrachospermales, and the infra-ordinal relationship remains unresolved. Plastid (cp) genomes of seven members of the freshwater red algal order Batrachospermales were sequenced, with the following aims: (i) to describe the characteristics of cp genomes and compare these with other red algal groups; (ii) to infer the phylogenetic relationships among these members to better understand the infra-ordinal classification. Cp genomes of Batrachospermales are large, with several cases of gene loss, they are gene-dense (high gene content for the genome size and short intergenic regions) and have highly conserved gene order. Phylogenetic analyses based on concatenated nucleotide genome data roughly supports the current taxonomic system for the order. Comparative analyses confirm data for members of the class Florideophyceae that cp genomes in Batrachospermales is highly conserved, with little variation in gene composition. However, relevant new features were revealed in our study: genome sizes in members of Batrachospermales are close to the lowest values reported for Florideophyceae; differences in cp genome size within the order are large in comparison with other orders (Ceramiales, Gelidiales, Gracilariales, Hildenbrandiales, and Nemaliales); and members of Batrachospermales have the lowest number of protein-coding genes among the Florideophyceae. In terms of gene loss, apcF, which encodes the allophycocyanin beta subunit, is absent in all sequenced taxa of Batrachospermales. We reinforce that the interordinal relationships between the freshwater orders Batrachospermales and Thoreales within the Nemaliophycidae is not well resolved due to limited taxon sampling.